A Compact Imbedding Theorem for Functions without Compact Support

1971 ◽  
Vol 14 (3) ◽  
pp. 305-309 ◽  
Author(s):  
R. A. Adams ◽  
John Fournier

The extension of the Rellich-Kondrachov theorem on the complete continuity of Sobolev space imbeddings of the sort1to unbounded domains G has recently been under study [1–5] and this study has yielded [4] a condition on G which is necessary and sufficient for the compactness of (1). Similar compactness theorems for the imbeddings2are well known for bounded domains G with suitably regular boundaries, and the question naturally arises whether any extensions to unbounded domains can be made in this case.

2005 ◽  
Vol 2005 (7) ◽  
pp. 733-756 ◽  
Author(s):  
A. Volpert ◽  
V. Volpert

The paper is devoted to general elliptic problems in the Douglis-Nirenberg sense. We obtain a necessary and sufficient condition of normal solvability in the case of unbounded domains. Along with the ellipticity condition, proper ellipticity and Lopatinsky condition that determine normal solvability of elliptic problems in bounded domains, one more condition formulated in terms of limiting problems should be imposed in the case of unbounded domains.


1993 ◽  
Vol 18 (2-4) ◽  
pp. 129-149
Author(s):  
Serge Garlatti

Representation systems based on inheritance networks are founded on the hierarchical structure of knowledge. Such representation is composed of a set of objects and a set of is-a links between nodes. Objects are generally defined by means of a set of properties. An inheritance mechanism enables us to share properties across the hierarchy, called an inheritance graph. It is often difficult, even impossible to define classes by means of a set of necessary and sufficient conditions. For this reason, exceptions must be allowed and they induce nonmonotonic reasoning. Many researchers have used default logic to give them formal semantics and to define sound inferences. In this paper, we propose a survey of the different models of nonmonotonic inheritance systems by means of default logic. A comparison between default theories and inheritance mechanisms is made. In conclusion, the ability of default logic to take some inheritance mechanisms into account is discussed.


Author(s):  
João-Paulo Dias ◽  
Mário Figueira ◽  
Filipe Oliveira

We prove the existence of solitary wave solutions to the quasilinear Benney systemwhere , –1 < p < +∞ and a, γ > 0. We establish, in particular, the existence of travelling waves with speed arbitrarily large if p < 0 and arbitrarily close to 0 if . We also show the existence of standing waves in the case , with compact support if – 1 < p < 0. Finally, we obtain, under certain conditions, the linearized stability of such solutions.


Ramus ◽  
2007 ◽  
Vol 36 (1) ◽  
pp. 25-38 ◽  
Author(s):  
Myles Lavan

(BJ6.350)Those who discard their weapons and surrender their persons, I will let live. Like a lenient master in a household, I will punish the incorrigible but preserve the rest for myself.So ends Titus' address to the embattled defenders of Jerusalem in the sixth book of Josephus'Jewish War(6.328-50). It is the most substantial instance of communication between Romans and Jews in the work. Titus compares himself to the master of a household and the Jewish rebels to his slaves. Is this how we expect a Roman to describe empire? If not, what does it mean for our understanding of the politics of Josephus' history? The question is particularly acute given that this is not just any Roman but Titus himself: heir apparent and, if we believe Josephus, the man who read and approved this historical account. It is thus surprising that, while the speeches of Jewish advocates of submission to Rome such as Agrippa II (2.345-401) and Josephus himself (5.362-419) have long fascinated readers, Titus' speech has received little or no attention. Remarkably, it is not mentioned in any of three recent collections of essays on Josephus. This paper aims to highlight the rhetorical choices that Josephus has made in constructing this voice for Titus—particularly his self-presentation as master—and the interpretive questions these raise for his readers. It should go without saying that the relationship of this text to anything that Titus may have said during the siege is highly problematic. (Potentially more significant, but unfortunately no less speculative, is the question of how it might relate to any speech recorded in the commentaries of Vespasian and Titus that Josephus appears to have used as a source.) What we have is a Josephan composition that is embedded in the broader narrative of theJewish War.


2016 ◽  
Vol 37 (7) ◽  
pp. 2163-2186 ◽  
Author(s):  
ANNA GIORDANO BRUNO ◽  
SIMONE VIRILI

Let $G$ be a topological group, let $\unicode[STIX]{x1D719}$ be a continuous endomorphism of $G$ and let $H$ be a closed $\unicode[STIX]{x1D719}$-invariant subgroup of $G$. We study whether the topological entropy is an additive invariant, that is, $$\begin{eqnarray}h_{\text{top}}(\unicode[STIX]{x1D719})=h_{\text{top}}(\unicode[STIX]{x1D719}\restriction _{H})+h_{\text{top}}(\bar{\unicode[STIX]{x1D719}}),\end{eqnarray}$$ where $\bar{\unicode[STIX]{x1D719}}:G/H\rightarrow G/H$ is the map induced by $\unicode[STIX]{x1D719}$. We concentrate on the case when $G$ is totally disconnected locally compact and $H$ is either compact or normal. Under these hypotheses, we show that the above additivity property holds true whenever $\unicode[STIX]{x1D719}H=H$ and $\ker (\unicode[STIX]{x1D719})\leq H$. As an application, we give a dynamical interpretation of the scale $s(\unicode[STIX]{x1D719})$ by showing that $\log s(\unicode[STIX]{x1D719})$ is the topological entropy of a suitable map induced by $\unicode[STIX]{x1D719}$. Finally, we give necessary and sufficient conditions for the equality $\log s(\unicode[STIX]{x1D719})=h_{\text{top}}(\unicode[STIX]{x1D719})$ to hold.


Author(s):  
Lu Wudu

AbstractConsider the nonlinear neutral equationwhere pi(t), hi(t), gj(t), Q(t) Є C[t0, ∞), limt→∞hi(t) = ∞, limt→∞gj(t) = ∞ i Є Im = {1, 2, …, m}, j Є In = {1, 2, …, n}. We obtain a necessary and sufficient condition (2) for this equation to have a nonoscillatory solution x(t) with limt→∞ inf|x(t)| > 0 (Theorems 5 and 6) or to have a bounded nonoscillatory solution x(t) with limt→∞ inf|x(t)| > 0 (Theorem 7).


Author(s):  
S. N. Afriat

Since the first introduction of the concept of a matrix, questions about functions of matrices have had the attention of many writers, starting with Cayley(i) in 1858, and Laguerre(2) in 1867. In 1883, Sylvester(3) defined a general function φ(a) of a matrix a with simple characteristic roots, by use of Lagrange's interpolation formula, and Buchheim (4), in 1886, extended his definition to the case of multiple characteristic roots. Then Weyr(5) showed in 1887 that, for a matrix a with characteristic roots lying inside the circle of convergence of a power series φ(ζ), the power series φ(a) is convergent; and in 1900 Poincaré (6) obtained the formulaefor the sum, where C is a circle lying in and concentric with the circle of convergence, and containing all the characteristic roots in its ulterior, such a formula having effectively been suggested by Frobenius(7) in 1896 for defining a general function of a matrix. Phillips (8), in 1919, discovered the analogue, for power series in matrices, of Taylor's theorem. In 1926 Hensel(9) completed the result of Weyr by showing that a necessary and sufficient condition for the convergence of φ(a) is the convergence of the derived series φ(r)(α) (0 ≼ r < mα; α) at each characteristic root α of a, of order r at most the multiplicity mα of α. In 1928 Giorgi(10) gave a definition, depending on the classical canonical decomposition of a matrix, which is equivalent to the contour integral formula, and Fantappie (11) developed the theory of this formula, and obtained the expressionfor the characteristic projectors.


1969 ◽  
Vol 21 ◽  
pp. 748-750 ◽  
Author(s):  
B. R. Wenner

Although the Lebesgue dimension function is topologically invariant, the dimension-theoretic properties of a metric space can sometimes be made clearer by the introduction of a new, topologically equivalent metric. A considerable amount of effort has been devoted to the problem of constructing such metrics; one example of the fruits of this research is the following theorem by Nagata (2, Theorem 5).In order that dim R ≦ n for a metrizable space R it is necessary and sufficient to be able to define a metric p(x, y) agreeing with the topology of R such that for every ∊ > 0 and for every point x oƒ R,implyA metric ρ which satisfies the condition of this theorem is called Nagata's metric (this term was introduced, to the best of the author's knowledge, by Nagami (1, Definition 9.3)).


1993 ◽  
Vol 45 (3) ◽  
pp. 449-469 ◽  
Author(s):  
M. A. Akcoglu ◽  
Y. Déniel

AbstractLet ℝ denote the real line. Let {Tt}tєℝ be a measure preserving ergodic flow on a non atomic finite measure space (X, ℱ, μ). A nonnegative function φ on ℝ is called a weight function if ∫ℝ φ(t)dt = 1. Consider the weighted ergodic averagesof a function f X —> ℝ, where {θk} is a sequence of weight functions. Some sufficient and some necessary and sufficient conditions are given for the a.e. convergence of Akf, in particular for a special case in whichwhere φ is a fixed weight function and {(ak, rk)} is a sequence of pairs of real numbers such that rk > 0 for all k. These conditions are obtained by a combination of the methods of Bellow-Jones-Rosenblatt, developed to deal with moving ergodic averages, and the methods of Broise-Déniel-Derriennic, developed to deal with unbounded weight functions.


1990 ◽  
Vol 42 (2) ◽  
pp. 315-341 ◽  
Author(s):  
Stéphane Louboutin

Frobenius-Rabinowitsch's theorem provides us with a necessary and sufficient condition for the class-number of a complex quadratic field with negative discriminant D to be one in terms of the primality of the values taken by the quadratic polynomial with discriminant Don consecutive integers (See [1], [7]). M. D. Hendy extended Frobenius-Rabinowitsch's result to a necessary and sufficient condition for the class-number of a complex quadratic field with discriminant D to be two in terms of the primality of the values taken by the quadratic polynomials and with discriminant D (see [2], [7]).


Sign in / Sign up

Export Citation Format

Share Document