The Building of Wireless Inertial Sensor Navigation System

Author(s):  
Wang Yongsheng
2012 ◽  
Vol 245 ◽  
pp. 323-329 ◽  
Author(s):  
Muhammad Ushaq ◽  
Jian Cheng Fang

Inertial navigation systems exhibit position errors that tend to grow with time in an unbounded mode. This degradation is due, in part, to errors in the initialization of the inertial measurement unit and inertial sensor imperfections such as accelerometer biases and gyroscope drifts. Mitigation to this growth and bounding the errors is to update the inertial navigation system periodically with external position (and/or velocity, attitude) fixes. The synergistic effect is obtained through external measurements updating the inertial navigation system using Kalman filter algorithm. It is a natural requirement that the inertial data and data from the external aids be combined in an optimal and efficient manner. In this paper an efficient method for integration of Strapdown Inertia Navigation System (SINS), Global Positioning System (GPS) and Doppler radar is presented using a centralized linear Kalman filter by treating vector measurements with uncorrelated errors as scalars. Two main advantages have been obtained with this improved scheme. First is the reduced computation time as the number of arithmetic computation required for processing a vector as successive scalar measurements is significantly less than the corresponding number of operations for vector measurement processing. Second advantage is the improved numerical accuracy as avoiding matrix inversion in the implementation of covariance equations improves the robustness of the covariance computations against round off errors.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5570
Author(s):  
Yiming Ding ◽  
Zhi Xiong ◽  
Wanling Li ◽  
Zhiguo Cao ◽  
Zhengchun Wang

The combination of biomechanics and inertial pedestrian navigation research provides a very promising approach for pedestrian positioning in environments where Global Positioning System (GPS) signal is unavailable. However, in practical applications such as fire rescue and indoor security, the inertial sensor-based pedestrian navigation system is facing various challenges, especially the step length estimation errors and heading drift in running and sprint. In this paper, a trinal-node, including two thigh-worn inertial measurement units (IMU) and one waist-worn IMU, based simultaneous localization and occupation grid mapping method is proposed. Specifically, the gait detection and segmentation are realized by the zero-crossing detection of the difference of thighs pitch angle. A piecewise function between the step length and the probability distribution of waist horizontal acceleration is established to achieve accurate step length estimation both in regular walking and drastic motions. In addition, the simultaneous localization and mapping method based on occupancy grids, which involves the historic trajectory to improve the pedestrian’s pose estimation is introduced. The experiments show that the proposed trinal-node pedestrian inertial odometer can identify and segment each gait cycle in the walking, running, and sprint. The average step length estimation error is no more than 3.58% of the total travel distance in the motion speed from 1.23 m/s to 3.92 m/s. In combination with the proposed simultaneous localization and mapping method based on the occupancy grid, the localization error is less than 5 m in a single-story building of 2643.2 m2.


Sensor Review ◽  
2015 ◽  
Vol 35 (4) ◽  
pp. 389-400 ◽  
Author(s):  
Hongyu Zhao ◽  
Zhelong Wang ◽  
Qin Gao ◽  
Mohammad Mehedi Hassan ◽  
Abdulhameed Alelaiwi

Purpose – The purpose of this paper is to develop an online smoothing zero-velocity-update (ZUPT) method that helps achieve smooth estimation of human foot motion for the ZUPT-aided inertial pedestrian navigation system. Design/methodology/approach – The smoothing ZUPT is based on a Rauch–Tung–Striebel (RTS) smoother, using a six-state Kalman filter (KF) as the forward filter. The KF acts as an indirect filter, which allows the sensor measurement error and position error to be excluded from the error state vector, so as to reduce the modeling error and computational cost. A threshold-based strategy is exploited to verify the detected ZUPT periods, with the threshold parameter determined by a clustering algorithm. A quantitative index is proposed to give a smoothness estimate of the position data. Findings – Experimental results show that the proposed method can improve the smoothness, robustness, efficiency and accuracy of pedestrian navigation. Research limitations/implications – Because of the chosen smoothing algorithm, a delay no longer than one gait cycle is introduced. Therefore, the proposed method is suitable for applications with soft real-time constraints. Practical implications – The paper includes implications for the smooth estimation of most types of pedal locomotion that are achieved by legged motion, by using a sole foot-mounted commercial-grade inertial sensor. Originality/value – This paper helps realize smooth transitions between swing and stance phases, helps enable continuous correction of navigation errors during the whole gait cycle, helps achieve robust detection of gait phases and, more importantly, requires lower computational cost.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6238
Author(s):  
Payal Mahida ◽  
Seyed Shahrestani ◽  
Hon Cheung

Wayfinding and navigation can present substantial challenges to visually impaired (VI) people. Some of the significant aspects of these challenges arise from the difficulty of knowing the location of a moving person with enough accuracy. Positioning and localization in indoor environments require unique solutions. Furthermore, positioning is one of the critical aspects of any navigation system that can assist a VI person with their independent movement. The other essential features of a typical indoor navigation system include pathfinding, obstacle avoidance, and capabilities for user interaction. This work focuses on the positioning of a VI person with enough precision for their use in indoor navigation. We aim to achieve this by utilizing only the capabilities of a typical smartphone. More specifically, our proposed approach is based on the use of the accelerometer, gyroscope, and magnetometer of a smartphone. We consider the indoor environment to be divided into microcells, with the vertex of each microcell being assigned two-dimensional local coordinates. A regression-based analysis is used to train a multilayer perceptron neural network to map the inertial sensor measurements to the coordinates of the vertex of the microcell corresponding to the position of the smartphone. In order to test our proposed solution, we used IPIN2016, a publicly-available multivariate dataset that divides the indoor environment into cells tagged with the inertial sensor data of a smartphone, in order to generate the training and validating sets. Our experiments show that our proposed approach can achieve a remarkable prediction accuracy of more than 94%, with a 0.65 m positioning error.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3786 ◽  
Author(s):  
Huang ◽  
Hsieh ◽  
Liu ◽  
Cheng ◽  
Hsu ◽  
...  

The interior space of large-scale buildings, such as hospitals, with a variety of departments, is so complicated that people may easily lose their way while visiting. Difficulties in wayfinding can cause stress, anxiety, frustration and safety issues to patients and families. An indoor navigation system including route planning and localization is utilized to guide people from one place to another. The localization of moving subjects is a critical-function component in an indoor navigation system. Pedestrian dead reckoning (PDR) is a technology that is widely employed for localization due to the advantage of being independent of infrastructure. To improve the accuracy of the localization system, combining different technologies is one of the solutions. In this study, a multi-sensor fusion approach is proposed to improve the accuracy of the PDR system by utilizing a light sensor, Bluetooth and map information. These simple mechanisms are applied to deal with the issue of accumulative error by identifying edge and sub-edge information from both Bluetooth and the light sensor. Overall, the accumulative error of the proposed multi-sensor fusion approach is below 65 cm in different cases of light arrangement. Compared to inertial sensor-based PDR system, the proposed multi-sensor fusion approach can improve 90% of the localization accuracy in an environment with an appropriate density of ceiling-mounted lamps. The results demonstrate that the proposed approach can improve the localization accuracy by utilizing multi-sensor data and fulfill the feasibility requirements of localization in an indoor navigation system.


Sign in / Sign up

Export Citation Format

Share Document