zero velocity
Recently Published Documents


TOTAL DOCUMENTS

223
(FIVE YEARS 64)

H-INDEX

21
(FIVE YEARS 5)

2022 ◽  
Vol 14 (2) ◽  
pp. 300
Author(s):  
Dongpeng Xie ◽  
Jinguang Jiang ◽  
Jiaji Wu ◽  
Peihui Yan ◽  
Yanan Tang ◽  
...  

Aiming at the problem of high-precision positioning of mass-pedestrians with low-cost sensors, a robust single-antenna Global Navigation Satellite System (GNSS)/Pedestrian Dead Reckoning (PDR) integration scheme is proposed with Gate Recurrent Unit (GRU)-based zero-velocity detector. Based on the foot-mounted pedestrian navigation system, the error state extended Kalman filter (EKF) framework is used to fuse GNSS position, zero-velocity state, barometer elevation, and other information. The main algorithms include improved carrier phase smoothing pseudo-range GNSS single-point positioning, GRU-based zero-velocity detection, and adaptive fusion algorithm of GNSS and PDR. Finally, the scheme was tested. The root mean square error (RMSE) of the horizontal error in the open and complex environments is lower than 1 m and 1.5 m respectively. In the indoor elevation experiment where the elevation difference of upstairs and downstairs exceeds 25 m, the elevation error is lower than 1 m. This result can provide technical reference for the accurate and continuous acquisition of public pedestrian location information.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Langping An ◽  
Xianfei Pan ◽  
Tingting Li ◽  
Mang Wang

Real-time and robust state estimation for pedestrians is a challenging problem under the satellite denial environment. The zero-velocity-aided foot-mounted inertial navigation system, with the shortcomings of unobservable heading, error accumulation, and poorly adaptable parameters, is a conventional method to estimate the pose relative to a known origin. Visual and inertial fusion is a popular technology for state estimation over the past decades, but it cannot make full use of the movement characteristics of pedestrians. In this paper, we propose a novel visual-aided inertial navigation algorithm for pedestrians, which improves the robustness in the dynamic environment and for multi-motion pedestrians. The algorithm proposed combines the zero-velocity-aided INS with visual odometry to obtain more accurate pose estimation in various environments. And then, the parameters of INS have adjusted adaptively via taking errors between fusion estimation and INS outputs as observers in the factor graphs. We evaluate the performance of our system with real-world experiments. Results are compared with other algorithms to show that the absolute trajectory accuracy in the algorithm proposed has been greatly improved, especially in the dynamic scene and multi-motions trials.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yushuai Zhang ◽  
Jianxin Guo ◽  
Feng Wang ◽  
Rui Zhu ◽  
Liping Wang

The specific objective of this study is to propose a low-cost indoor navigation framework with nonbasic equipment by combining inertial sensors and indoor map messages. The proposed pedestrian navigation framework consists of a lower filter and an upper filter. In the lower filter which is designed based on the Kalman filter, the adaptive zero velocity detection algorithm is used to detect the zero velocity interval at different motion speeds, and then, zero velocity update is applied to rectify the inertial navigation solutions’ errors. In the upper filter which is designed based on the nonrecursive Bayesian filter, the map matching method with nonrecursive Bayesian filter is adopted to fuse the map prior information and the lower filter estimation results to correct the errors of navigation. The position estimation presented in this study achieves an average position error of 0.53 m compared to the ZUPT-aided inertial navigation system (INS) method under different motion states. The proposed pedestrian navigation algorithm achieves an average position error of 0.54 m as compared to the ZUPT-aided INS method among the different tested distances. The proposed framework simplifies the indoor positioning system under multiple motion speed conditions by ensuring the accuracy and stability property. The effectiveness and accuracy of the proposed framework are experimentally verified in various real-world scenarios.


2021 ◽  
Author(s):  
Vesna Bacheva ◽  
Federico Paratore ◽  
Maya Dolev ◽  
Baruch Rofman ◽  
Govind Kaigala ◽  
...  

We present a microfluidic device for selective separation and extraction of molecules based on their diffusivity. The separation relies on electroosmotically-driven bidirectional flows in which high diffusivity species experience a net-zero velocity, and lower diffusivity species are advected to a collection reservoir. The device can operate continuously and is suitable for processing low sample volumes. Using several model systems, we showed that the extraction efficiency of the system is maintained at more than 90% over tens of minutes, with a purity of more than 99%. We demonstrate the applicability of the device to the extraction of genomic DNA from short DNA fragments.


2021 ◽  
Author(s):  
Langping An ◽  
Xianfei Pan ◽  
Mang Wang ◽  
Ze Chen ◽  
Zheming Tu ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 6972
Author(s):  
Harun Jamil ◽  
Faiza Qayyum ◽  
Faisal Jamil ◽  
Do-Hyeun Kim

This paper presents an enhanced PDR-BLE compensation mechanism for improving indoor localization, which is considerably resilient against variant uncertainties. The proposed method of ePDR-BLE compensation mechanism (EPBCM) takes advantage of the non-requirement of linearization of the system around its current state in an unscented Kalman filter (UKF) and Kalman filter (KF) in smoothing of received signal strength indicator (RSSI) values. In this paper, a fusion of conflicting information and the activity detection approach of an object in an indoor environment contemplates varying magnitude of accelerometer values based on the hidden Markov model (HMM). On the estimated orientation, the proposed approach remunerates the inadvertent body acceleration and magnetic distortion sensor data. Moreover, EPBCM can precisely calculate the velocity and position by reducing the position drift, which gives rise to a fault in zero-velocity and heading error. The developed EPBCM localization algorithm using Bluetooth low energy beacons (BLE) was applied and analyzed in an indoor environment. The experiments conducted in an indoor scenario shows the results of various activities performed by the object and achieves better orientation estimation, zero velocity measurements, and high position accuracy than other methods in the literature.


2021 ◽  
Author(s):  
Chi-Shih Jao ◽  
Andrei M. Shkel

<p>In this paper, we propose a Foot-Instability-Based Adaptive (FIBA) covariance to dynamically adjust the covariance matrix for the pseudo-zero-velocity measurements in the Zero velocity UPdaTe (ZUPT)-aided Inertial Navigation Systems (INS). The proposed ZUPT-aided INS using the FIBA covariance is implemented in an Adaptive Extended Kalman Filter (AEKF) framework, where the measurement covariance matrix is updated in each iteration according to the FIBA covariance. The FIBA covariance is designed to have a very high value during the swing phases in a gait cycle, and the value significantly decreases during the stance phases. As a result, the proposed method eliminates a need to use a binary stance phase detector in implementation of the ZUPT-aided INS. Two series of indoor pedestrian navigation experiments were conducted to investigate the navigation performance of the algorithm. In the first series of experiments, which included cases of walking and running, localization solutions produced by the system using the FIBA covariance demonstrated 36% and 64% improvements in navigation accuracy along the horizontal and vertical directions, respectively. In the second series of experiments, which included a pedestrian walking on different indoor terrains, such as flat planes, stairs, and ramps, the navigation accuracy of the system using the FIBA covariance reduced horizontal and vertical position errors by 12% and 45%, respectively, as compared to the conventional ZUPT-aided INS.</p>


2021 ◽  
Author(s):  
Chi-Shih Jao ◽  
Andrei M. Shkel

<p>In this paper, we propose a Foot-Instability-Based Adaptive (FIBA) covariance to dynamically adjust the covariance matrix for the pseudo-zero-velocity measurements in the Zero velocity UPdaTe (ZUPT)-aided Inertial Navigation Systems (INS). The proposed ZUPT-aided INS using the FIBA covariance is implemented in an Adaptive Extended Kalman Filter (AEKF) framework, where the measurement covariance matrix is updated in each iteration according to the FIBA covariance. The FIBA covariance is designed to have a very high value during the swing phases in a gait cycle, and the value significantly decreases during the stance phases. As a result, the proposed method eliminates a need to use a binary stance phase detector in implementation of the ZUPT-aided INS. Two series of indoor pedestrian navigation experiments were conducted to investigate the navigation performance of the algorithm. In the first series of experiments, which included cases of walking and running, localization solutions produced by the system using the FIBA covariance demonstrated 36% and 64% improvements in navigation accuracy along the horizontal and vertical directions, respectively. In the second series of experiments, which included a pedestrian walking on different indoor terrains, such as flat planes, stairs, and ramps, the navigation accuracy of the system using the FIBA covariance reduced horizontal and vertical position errors by 12% and 45%, respectively, as compared to the conventional ZUPT-aided INS.</p>


Sign in / Sign up

Export Citation Format

Share Document