scholarly journals An Application of Heterogeneous Bayesian Regression Models with Time Varying Coefficients to Explore the Relationship between Customer Satisfaction and Shareholder Value

2017 ◽  
Vol 07 (01) ◽  
pp. 36-53
Author(s):  
Duncan K. H. Fong ◽  
Qian Chen ◽  
Zhe Chen ◽  
Rui Wang
Econometrics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 29
Author(s):  
Emanuela Ciapanna ◽  
Marco Taboga

This paper deals with instability in regression coefficients. We propose a Bayesian regression model with time-varying coefficients (TVC) that allows to jointly estimate the degree of instability and the time-path of the coefficients. Thanks to the computational tractability of the model and to the fact that it is fully automatic, we are able to run Monte Carlo experiments and analyze its finite-sample properties. We find that the estimation precision and the forecasting accuracy of the TVC model compare favorably to those of other methods commonly employed to deal with parameter instability. A distinguishing feature of the TVC model is its robustness to mis-specification: Its performance is also satisfactory when regression coefficients are stable or when they experience discrete structural breaks. As a demonstrative application, we used our TVC model to estimate the exposures of S&P 500 stocks to market-wide risk factors: We found that a vast majority of stocks had time-varying exposures and the TVC model helped to better forecast these exposures.


Biometrics ◽  
1999 ◽  
Vol 55 (3) ◽  
pp. 944-950 ◽  
Author(s):  
Margaret Sullivan Pepe ◽  
Patrick Heagerty ◽  
Robert Whitaker

2007 ◽  
Vol 10 (05) ◽  
pp. 771-800 ◽  
Author(s):  
AHMED ABUTALEB ◽  
MICHAEL G. PAPAIOANNOU

The paper introduces a new method for the estimation of time-varying regression coefficients employed in financial modeling. We use Malliavin calculus (stochastic calculus of variations) to estimate the time-varying regression coefficients that appear in linear regression models, and the generalized Clark–Ocone formula to derive a closed-form solution for the estimates of the time-varying coefficients. While this approach can be applied to any signal model, we present its application to signals modeled as a Brownian motion and an Ornstein–Uhlenbeck process. Simulation results prove the superiority of the proposed method, as compared to conventional methods.


Eng ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 99-125
Author(s):  
Edward W. Kamen

A transform approach based on a variable initial time (VIT) formulation is developed for discrete-time signals and linear time-varying discrete-time systems or digital filters. The VIT transform is a formal power series in z−1, which converts functions given by linear time-varying difference equations into left polynomial fractions with variable coefficients, and with initial conditions incorporated into the framework. It is shown that the transform satisfies a number of properties that are analogous to those of the ordinary z-transform, and that it is possible to do scaling of z−i by time functions, which results in left-fraction forms for the transform of a large class of functions including sinusoids with general time-varying amplitudes and frequencies. Using the extended right Euclidean algorithm in a skew polynomial ring with time-varying coefficients, it is shown that a sum of left polynomial fractions can be written as a single fraction, which results in linear time-varying recursions for the inverse transform of the combined fraction. The extraction of a first-order term from a given polynomial fraction is carried out in terms of the evaluation of zi at time functions. In the application to linear time-varying systems, it is proved that the VIT transform of the system output is equal to the product of the VIT transform of the input and the VIT transform of the unit-pulse response function. For systems given by a time-varying moving average or an autoregressive model, the transform framework is used to determine the steady-state output response resulting from various signal inputs such as the step and cosine functions.


2019 ◽  
Author(s):  
Jia Chen

Summary This paper studies the estimation of latent group structures in heterogeneous time-varying coefficient panel data models. While allowing the coefficient functions to vary over cross-sections provides a good way to model cross-sectional heterogeneity, it reduces the degree of freedom and leads to poor estimation accuracy when the time-series length is short. On the other hand, in a lot of empirical studies, it is not uncommon to find that heterogeneous coefficients exhibit group structures where coefficients belonging to the same group are similar or identical. This paper aims to provide an easy and straightforward approach for estimating the underlying latent groups. This approach is based on the hierarchical agglomerative clustering (HAC) of kernel estimates of the heterogeneous time-varying coefficients when the number of groups is known. We establish the consistency of this clustering method and also propose a generalised information criterion for estimating the number of groups when it is unknown. Simulation studies are carried out to examine the finite-sample properties of the proposed clustering method as well as the post-clustering estimation of the group-specific time-varying coefficients. The simulation results show that our methods give comparable performance to the penalised-sieve-estimation-based classifier-LASSO approach by Su et al. (2018), but are computationally easier. An application to a panel study of economic growth is also provided.


Sign in / Sign up

Export Citation Format

Share Document