scholarly journals Evaluation of geothermal energy resources in parts of southeastern sedimentary basin, Nigeria

2021 ◽  
Vol 23 (1) ◽  
pp. 195-211
Author(s):  
I.M. Okiyi ◽  
S.I. Ibeneme ◽  
E.Y. Obiora ◽  
S.O. Onyekuru ◽  
A.I. Selemo ◽  
...  

Residual aeromagnetic data of parts of Southeastern Nigerian sedimentary basin were reduced to the equator and subjected to magnetic vector inversion and spectral analysis. Average depths of source ensembles from spectral analysis were used to compute depth to magnetic tops (Z), base of the magnetic layer (Curie Point t Depth (CPD)), and estimate geothermal gradient and heat flow required for the evaluation of the geothermal resources of the study area. Results from spectral analysis showed depths to the top of the magnetic source ranging between 0.45 km and 1.90 km; centroid depths of 4 km - 7.87 km and CPD of between 6.15 km and 14.19 km. The CPD were used to estimate geothermal gradients which ranged from 20.3°C/km to 50.0°C/km 2 2 and corresponding heat flow values of 34.9 mW/m to 105 mW/m , utilizing an average thermal conductivity -1 -1 of 2.15 Wm k . Ezzagu (Ogboji), Amanator-Isu, Azuinyaba, Nkalagu, Amagunze, Nta-Nselle, Nnam, Akorfornor environs are situated within regions of high geothermal gradients (>38°C/Km) with models delineated beneath these regions using 3D Magnetic Vector Inversion, having dominant NW-SE and NE-SW trends at shallow and greater depths of <1km to >7 km bsl. Based on VES and 2D imaging models the geothermal system in Alok can be classified as Hot Dry Rock (HDR) type, which may likely have emanated from fracture systems. There is prospect for the development of geothermal energy in the study area. Keywords: Airborne Magnetics, Magnetic Vector Inversion, Geothermal Gradient, Heat Flow, Curie Point Depth, Geothermal Energy.

2018 ◽  
Vol 27 (4) ◽  
pp. 1291-1299
Author(s):  
Jean Aimé Mono ◽  
Théophile Ndougsa-Mbarga ◽  
Yara Tarek ◽  
Jean Daniel Ngoh ◽  
Olivier Ulrich Igor Owono Amougou

Author(s):  
B. C. Udochukwu ◽  
M. Akiishi ◽  
A. A. Tyovenda

The aeromagnetic data of Monguno area northeastern Nigeria have been used to estimate Curie point depth, geothermal gradients and heat flow using spectral analysis. These geothermal parameters were subsequently employed to identify areas of geothermal resources. First order polynomial fitting was applied in Regional-residual separation. The Curie point depth obtained in this area ranges from 10.318 to 24.476 km with an average of 13.387 km, the geothermal gradient of the area varies from 23.697 to 56.212°C /km, with an average of 46.195°C /km, while the heat flow ranges from 59.242 to 136.176 mWm-2, with an average value of about 112.364 mWm-2. It was also observed that the deepest Curie depth in the area is identified in the south, while the shallow depth is located in the northeast and spread toward the southwest. On the other hand, the highest geothermal gradient in the area is identified in the northern part of Moguno, while in the south,                    the lowest, geothermal gradient is located. The highest heat flow in the area is seen in the south-west and north-east, while the lowest heat flow is observed in the south. The high heat flow and geothermal gradient in the area show that geothermal energy could be found in Monguno region of the northeastern Nigeria.


2021 ◽  
Author(s):  
Elshalom Omokpariola ◽  
Emmanuel Anakwuba

Abstract In tackling energy-related challenges in Nigeria; the exploration of an alternative source of energy (Geothermal Energy) comes to the limelight as it is generated below the earth subsurface. This work focuses on the delineation of geothermal energy potentials in parts of Calabar Flank, in southeastern Nigeria using Aeromagnetic Data. The aim is to understand the geothermal energy potentials and structural of parts of the Calabar flank by studying the various geothermal, geological, and structural parameters using Aeromagnetic Data. The methodologies applied are quantitative for structural analysis and qualitative using spectral analysis and 3D Euler Deconvolution. The study area lies between within Latitude 5°30ʹ00ʺ N - 6°30ʹ00ʺN and Longitude 7°30ʹ00ʺE - 8°30ʹ0ʺE respectively. Results from the 3D Euler analysis revealed the depth range of 0.25 Km to 4.018 Km. the spectral Analysis revealed a depth range of Magnetic source (Zt) is (-)0.564 Km to (-)0.828 Km, the Zo is (-)4.261 Km to (-)5.999Km and the average depth to basement thickness is (-)4.825 Km. The Curie Point Depth, Geothermal Gradient, and Heat flow yield an average depth of (-)9.452 Km, a value of 61.893CKm-1, and 154.983 mWm-2 from the Spectral Analysis. Some structural features such as trending faults, and fractured basements was observed at the NE-SW of the study area and this correlated to the relatively high heat flow and geothermal gradient at the NNE-SSW part is associated with thermal structures, mineralogical and tectonic history from the NE-SW trending fault in the study area is suitable for geothermal energy exploitation.


2020 ◽  
Vol 4 (2) ◽  
pp. 627-638
Author(s):  
Idena Odidi ◽  
A. Mallam ◽  
N. Nasir

The current study deals with an estimate of the Curie point depth, heat flow and geothermal gradient from spectral analysis of aeromagnetic data covering an area located approximately between latitude 7.5o N to 11.5o N and longitude 7.5o E to 10.5o E, which corresponds to parts of the Benue trough (lower part of the Upper Benue trough, the entire middle Benue trough, and upper part of the Lower Benue trough), lower part of the Gongola and Yola Basins, the Precambrian Basement, the Jurassic Younger Granites and two prominent hot Springs, Wiki hot spring in Bauchi state (in the north-eastern part) and Akiri hot spring in Nasarawa state (in the south-western part) of central and north-eastern Nigeria. Radially power spectrum was applied to the aeromagnetic data of the study area divided into 48 square blocks and each block analysed using the spectral centroid method to obtain depth to the top, centroid and bottom of magnetic sources. The depth values were subsequently used to evaluate the Curie-point depth (CPD), geothermal gradient and near-surface heat flow in the study area. The values of the curie point depths (Zb), range from 7.6341 km to 34.5158 km, with a mean value of 14.7928km, geothermal gradient, range from 16.8039 0C km-1 to 75.97490C km-1, with mean value of 45.7021 0C km-1 and heat flow (q), range from 42.0097 mWm-2 to 189.9372mWm-2, with a mean value of 114.2554mWm-2. Which reveals that, there might probably be good sources for geothermal and thereby further recommended for detailed geothermal exploration.


2020 ◽  
Vol 4 (2) ◽  
pp. 78-83
Author(s):  
Ekpa, Moses M. M ◽  
Ibuot, Johnson C. ◽  
Okeke, Francisca N. ◽  
Obiora, Daniel N.

Geophysical study involving aeromagnetic method was carried out to investigate parts of Niger Delta in Nigeria, aimed at investigating the cause and nature of anomalous bodies within the study area. Spectral analysis technique was employed in quantitative interpretation to determine depth/thickness of the sedimentary basin, basement topography, structural trends, curie point depth, thermal gradient and heat flow in the area. The total magnetic intensity (TMI) anomalies had values of between -53.7nT and 119.5nT while the residual magnetic intensity ranged from -52.5 to 58.0nT. The spectral analysis revealed the depth to magnetic sources varying from 2.5 to 5.5km while the shallow magnetic sources varied from 0.89 to 1.47km. The geothermal analysis revealed the curie point depth between 11.782 and 18.048km while the calculated geothermal gradient ranged lie between 32.137 and 49.231o𝐶𝑘𝑚−1. The heat flow values ranged from 80.343 to 123.080𝑚𝑊𝑚−2. The results from this study have thrown more light to the understanding of the variation of subsurface structures in the study area. These will enhance the development of the resources and will be of economic benefit to the country if well harnessed. However, possible future research work on this active area is proposed for more robust results.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 706
Author(s):  
Jacek Majorowicz ◽  
Stephen E. Grasby

We summarize the feasibility of using geothermal energy from the Western Canada Sedimentary Basin (WCSB) to support communities with populations >3000 people, including those in northeastern British Columbia, southwestern part of Northwest Territories (NWT), southern Saskatchewan, and southeastern Manitoba, along with previously studied communities in Alberta. The geothermal energy potential of the WCSB is largely determined by the basin’s geometry; the sediments start at 0 m thickness adjacent to the Canadian shield in the east and thicken to >6 km to the west, and over 3 km in the Williston sub-basin to the south. Direct heat use is most promising in the western and southern parts of the WCSB where sediment thickness exceeds 2–3 km. Geothermal potential is also dependent on the local geothermal gradient. Aquifers suitable for heating systems occur in western-northwestern Alberta, northeastern British Columbia, and southwestern Saskatchewan. Electrical power production is limited to the deepest parts of the WCSB, where aquifers >120 °C and fluid production rates >80 kg/s occur (southwestern Northwest Territories, northwestern Alberta, northeastern British Columbia, and southeastern Saskatchewan. For the western regions with the thickest sediments, the foreland basin east of the Rocky Mountains, estimates indicate that geothermal power up to 2 MWel. (electrical), and up to 10 times higher for heating in MWth. (thermal), are possible.


2020 ◽  
Vol 2 (8) ◽  
Author(s):  
Kasi Njeudjang ◽  
Janvier Domra Kana ◽  
Ahmat Tom ◽  
Jean Marcel Abate Essi ◽  
Noël Djongyang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document