scholarly journals R-adaptation par l'estimateur d'erreur hiérarchique

2006 ◽  
Vol Volume 5, Special Issue TAM... ◽  
Author(s):  
Abdellah Alla ◽  
Zoubida Mghazli ◽  
Michel Fortin ◽  
Frédéric Hecht

International audience The aim of this work is to devise a method to determine the optimal position of the nodes in a finite element discretization for a boundary value problem. The node displacement procedure (also called R-adaptation) is a crucial step in a global mesh adaptation procedure. In the present approch, we determine the nodal position by minimizing the approximation error. This error is evaluated using a hierarchical estimator. A numerical test is presented. L'objectif de ce travail est de déterminer la meilleure position des noeuds d'un maillage, utilisé lors de la discrétisation d'un problème aux limites par la méthode des éléments finis. La procédure de déplacement des noeuds (appelé aussi R-adaptation) est une étape importante dans la stratégie globale d'adaptation de maillage. La position optimale des noeuds est déterminée en minimisant l'erreur d'approximation. Pour évaluer cette erreur nous utilisons l'estimateur d'erreur hiérarchique. Un test numérique est présenté.

2014 ◽  
Vol 24 (08) ◽  
pp. 1495-1539 ◽  
Author(s):  
Francesco Bassi ◽  
Lorenzo Botti ◽  
Alessandro Colombo

In this work we consider agglomeration-based physical frame discontinuous Galerkin (dG) discretization as an effective way to increase the flexibility of high-order finite element methods. The mesh free concept is pursued in the following (broad) sense: the computational domain is still discretized using a mesh but the computational grid should not be a constraint for the finite element discretization. In particular the discrete space choice, its convergence properties, and even the complexity of solving the global system of equations resulting from the dG discretization should not be influenced by the grid choice. Physical frame dG discretization allows to obtain mesh-independent h-convergence rates. Thanks to mesh agglomeration, high-order accurate discretizations can be performed on arbitrarily coarse grids, without resorting to very high-order approximations of domain boundaries. Agglomeration-based h-multigrid techniques are the obvious choice to obtain fast and grid-independent solvers. These features (attractive for any mesh free discretization) are demonstrated in practice with numerical test cases.


Sign in / Sign up

Export Citation Format

Share Document