scholarly journals Influences of local materials on the building behavior and evaluation of the cooling loads

2021 ◽  
Vol 2 (2) ◽  
pp. C20A19-1-C20A19-7
Author(s):  
Fati Amadou-Oumarou ◽  
◽  
Souleymane Ouédraogo ◽  
Adrien Sanembaye ◽  
Amadou Konfé ◽  
...  

The energy demand in buildings sector is always increasing due to the climate, the economic growth, and also the need for thermal comfort. The aim of this paper is to find a way that can significantly reduce the energy demand for a building through an improvement of the design of its thermal envelope. Within this work, we utilized the thermophysical properties of four building materials: three local materials (compressed earth block (BTC), lateritic block (BLT), and raw earth), and one modern (Hollow cement). The numerical optimization of the building design has been performed dynamically by Comsol 5.3a software: the case study is Ouagadougou and the surface is 100m2. Also, the temporal variations in the inside of the room, as well as the internal and external temperatures of the walls and the ceiling with four different materials, have been determined. The result of the simulation shows that, for BLT, the maximum of ambiante temperature is obtained 308K around 22h, for Adobe it is 308.8K around 21h, for BTC it was 309.2K at 19h30, and finally for cement block it is 310K around 17. We can safely say that BLT is the material leading to the lowest average daily indoor temperature variation, thus leading to the reduction of air conditioning load and the need for thermal comfort and around the order of 4KW of energy saving can be obtained.

Author(s):  
Amadou Oumarou Fati ◽  
Bonkaney Abdou Latif ◽  
Ouedraogo Souleymane ◽  
S. M. Ky. Thierry ◽  
Mamadou Lewamy ◽  
...  

The increasing energy demands in the building sector is considered as a main issue and has result both in the energy shortage and also environmental impact such as climate change and global warming. This demand is always increasing due to the high-rise level and also the need of thermal comfort. This paper aims to describe a passive approach to reduce the energy demand for a building through an improvement of the design of the thermal envelope. Within this work, we utilized the thermophysical properties of four building materials: three local materials (compressed earth, lateritic, and raw material) and one modern (Hollow cement) and an energy analysis of the building has been carried out. The numerical optimization of the building design has been performed dynamically by COMSOL Multiphysics software: case study of Ouagadougou and surface is 100m2. Also, the temporal variations in the inside of the room as well as the temperature of the walls and the ceiling with four different materials have been determined. The result shows that, for BLT, the maximum obtained around 22H is 308K, for Adobe it is 309K around 18H30, for BTC it was 309.2K at 20H and finally for cement block it is 310K around 18H. The mean average temperature of the building is low when we use local materials instead of modern one. Then, we conclude that, the use of local materials in the building design is an option for reducing the heat transfer into the room and at the energy consumption.


Author(s):  
Pritam Roy

Abstract: This research paper presents the investigation of design consideration to achieve thermal comfort and the warm humid climatic zone of West Bengal is considered as the primary study area for the investigation. The varying thermal comfort behavior of humans in different climate conditions and seasons clearly demonstrates that the building design strategy must conform with the region of the building. In this paper, first studying the climatic characteristics of the warm humid region design factors are selected like building materials, cross ventilation, building orientation, roofing orientation, and materials, etc. After that, all those design factors are studied and the effect of all those factors on building in various conditions is observed. Keywords: Warm Humid Climate, Thermal Comfort, Building Materials, U-value, Cross Ventilation, Building Orientation


Author(s):  
AMADOU OUMAROU Fati ◽  
Ramchandra BHANDARI ◽  
MAMADOU Lewamy ◽  
KY Thierry S.M ◽  
OUEDRAOGO Souleymane ◽  
...  

This paper aims to describe a passive approach to reduce the energy demand for an existing building and can be made through an improvement of the design of the thermal envelope. The essential article goal is to simulate thermal construction responses in dependence on changing different materials of the construction of the building and also with less energy usage to design a more effective cooling system. In this approach, we simulate the building with different materials: three local materials (compressed earth, lateritic, and raw material) and one modern (Hollow cement) used in Burkina Faso and an energy analysis of the building has been carried out. The numerical optimization of the building design has been performed dynamically for these four materials using the COMSOL multiphysics simulation tool. The model treated is determining the internal temperature and cooling demand concerning a tertiary building in Burkina Faso like a classroom, which is located in a hot and dry climate to improve the indoor quality of the classroom knowing the importance of the thermal comfort in the room for socio-economic performance efficiency and well-being. The analysis result of these four materials shows that energy can be saved if we use local materials instead of the modern one because around 4KW of energy can be saving with local materials. The use of local materials in the building design can be an option for reducing the heat transfer into the room and at the same time the energy consumption.


2020 ◽  
pp. 174425912093004
Author(s):  
Yiğit Yılmaz ◽  
Burcu Çiğdem Yılmaz

In building design, the decision-makers should not focus only on energy efficiency as a single objective but indoor environmental quality indicators, such as thermal comfort, daylight usage and so on, should also be considered as a part of building performance. The building performance can be ensured by determining the proper performance indicators and the variables during the design. In this context, a weighted (among the objectives) multi-objective cost function was proposed, for the optimisation of energy, thermal comfort and daylight usage of a case study archetype design, through the selected design variables, considering the base architectural design principles as well. A typical social housing archetype design was determined as the case study to apply the proposed approach. The window sizes are optimised for each orientation simultaneously, for a temperate-humid climatic region. The results were evaluated in terms of improvement potentials of energy, thermal comfort and daylight performances, and the dominant values for the window sizes for each facade. According to the results, the optimised scenario achieved an 11.42% reduction in primary energy use equivalent to 181.24 kWh/m2a, a 4.52% reduction in a predicted percentage of dissatisfied with 9.12%, and a reduction in lighting energy of 4.94% equivalent to 21.17 kWh/m2a. These reductions verify the possibility to achieve higher performances on each criterion.


Author(s):  
Lukman Akanbi ◽  
Lukumon Oyedele ◽  
Juan Manuel Davila Delgado ◽  
Muhammad Bilal ◽  
Olugbenga Akinade ◽  
...  

Purpose In a circular economy, the goal is to keep materials values in the economy for as long as possible. For the construction industry to support the goal of the circular economy, there is the need for materials reuse. However, there is little or no information about the amount and quality of reusable materials obtainable when buildings are deconstructed. The purpose of this paper, therefore, is to develop a reusability analytics tool for assessing end-of-life status of building materials. Design/methodology/approach A review of the extant literature was carried out to identify the best approach to modelling end-of-life reusability assessment tool. The reliability analysis principle and materials properties were used to develop the predictive mathematical model for assessing building materials performance. The model was tested using the case study of a building design and materials take-off quantities as specified in the bill of quantity of the building design. Findings The results of analytics show that the quality of the building materials varies with the building component. For example, from the case study, at the 80th year of the building, the qualities of the obtainable concrete from the building are 0.9865, 0.9835, 0.9728 and 0.9799, respectively, from the foundation, first floor, frame and stair components of the building. Originality/value As a contribution to the concept of circular economy in the built environment, the tool provides a foundation for estimating the quality of obtainable building materials at the end-of-life based on the life expectancy of the building materials.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 827 ◽  
Author(s):  
Serafín Alonso ◽  
Antonio Morán ◽  
Miguel Prada ◽  
Perfecto Reguera ◽  
Juan Fuertes ◽  
...  

Large buildings cause more than 20% of the global energy consumption in advanced countries. In buildings such as hospitals, cooling loads represent an important percentage of the overall energy demand (up to 44%) due to the intensive use of heating, ventilation and air conditioning (HVAC) systems among other key factors, so their study should be considered. In this paper, we propose a data-driven analysis for improving the efficiency in multiple-chiller plants. Coefficient of performance (COP) is used as energy efficiency indicator. Data analysis, based on aggregation operations, filtering and data projection, allows us to obtain knowledge from chillers and the whole plant, in order to define and tune management rules. The plant manager software (PMS) that implements those rules establishes when a chiller should be staged up/down and which chiller should be started/stopped according different efficiency criteria. This approach has been applied on the chiller plant at the Hospital of León.


2020 ◽  
Vol 15 (3) ◽  
pp. 208-219
Author(s):  
Suha I. A. Ali ◽  
Zsuzsa Szalay

Sudan is suffering from harsh summers, but most of the modern buildings in urban areas are not compatible with the recent and future climate phenomena. Application of cooling devices is relatively expensive and therefore beyond reach. The main objective of this research is to give an overview on the overheating problem and the thermal comfort in buildings. A dynamic energy simulation has been performed for a selected case study using Design Builder Code. The results show that the share of discomfort hours for a typical modern building is 78% and 33% above 26 °C and 32 °C per year, respectively, but after using a combination of different ventilation, shading and building materials options the discomfort hours can be reduced to 77% and 26%, respectively.


Sign in / Sign up

Export Citation Format

Share Document