scholarly journals The Impact of Local Materials on the Improvement of the Thermal Comfort in Building

Author(s):  
Amadou Oumarou Fati ◽  
Bonkaney Abdou Latif ◽  
Ouedraogo Souleymane ◽  
S. M. Ky. Thierry ◽  
Mamadou Lewamy ◽  
...  

The increasing energy demands in the building sector is considered as a main issue and has result both in the energy shortage and also environmental impact such as climate change and global warming. This demand is always increasing due to the high-rise level and also the need of thermal comfort. This paper aims to describe a passive approach to reduce the energy demand for a building through an improvement of the design of the thermal envelope. Within this work, we utilized the thermophysical properties of four building materials: three local materials (compressed earth, lateritic, and raw material) and one modern (Hollow cement) and an energy analysis of the building has been carried out. The numerical optimization of the building design has been performed dynamically by COMSOL Multiphysics software: case study of Ouagadougou and surface is 100m2. Also, the temporal variations in the inside of the room as well as the temperature of the walls and the ceiling with four different materials have been determined. The result shows that, for BLT, the maximum obtained around 22H is 308K, for Adobe it is 309K around 18H30, for BTC it was 309.2K at 20H and finally for cement block it is 310K around 18H. The mean average temperature of the building is low when we use local materials instead of modern one. Then, we conclude that, the use of local materials in the building design is an option for reducing the heat transfer into the room and at the energy consumption.

2021 ◽  
Vol 2 (2) ◽  
pp. C20A19-1-C20A19-7
Author(s):  
Fati Amadou-Oumarou ◽  
◽  
Souleymane Ouédraogo ◽  
Adrien Sanembaye ◽  
Amadou Konfé ◽  
...  

The energy demand in buildings sector is always increasing due to the climate, the economic growth, and also the need for thermal comfort. The aim of this paper is to find a way that can significantly reduce the energy demand for a building through an improvement of the design of its thermal envelope. Within this work, we utilized the thermophysical properties of four building materials: three local materials (compressed earth block (BTC), lateritic block (BLT), and raw earth), and one modern (Hollow cement). The numerical optimization of the building design has been performed dynamically by Comsol 5.3a software: the case study is Ouagadougou and the surface is 100m2. Also, the temporal variations in the inside of the room, as well as the internal and external temperatures of the walls and the ceiling with four different materials, have been determined. The result of the simulation shows that, for BLT, the maximum of ambiante temperature is obtained 308K around 22h, for Adobe it is 308.8K around 21h, for BTC it was 309.2K at 19h30, and finally for cement block it is 310K around 17. We can safely say that BLT is the material leading to the lowest average daily indoor temperature variation, thus leading to the reduction of air conditioning load and the need for thermal comfort and around the order of 4KW of energy saving can be obtained.


Author(s):  
AMADOU OUMAROU Fati ◽  
Ramchandra BHANDARI ◽  
MAMADOU Lewamy ◽  
KY Thierry S.M ◽  
OUEDRAOGO Souleymane ◽  
...  

This paper aims to describe a passive approach to reduce the energy demand for an existing building and can be made through an improvement of the design of the thermal envelope. The essential article goal is to simulate thermal construction responses in dependence on changing different materials of the construction of the building and also with less energy usage to design a more effective cooling system. In this approach, we simulate the building with different materials: three local materials (compressed earth, lateritic, and raw material) and one modern (Hollow cement) used in Burkina Faso and an energy analysis of the building has been carried out. The numerical optimization of the building design has been performed dynamically for these four materials using the COMSOL multiphysics simulation tool. The model treated is determining the internal temperature and cooling demand concerning a tertiary building in Burkina Faso like a classroom, which is located in a hot and dry climate to improve the indoor quality of the classroom knowing the importance of the thermal comfort in the room for socio-economic performance efficiency and well-being. The analysis result of these four materials shows that energy can be saved if we use local materials instead of the modern one because around 4KW of energy can be saving with local materials. The use of local materials in the building design can be an option for reducing the heat transfer into the room and at the same time the energy consumption.


2020 ◽  
Vol 12 (8) ◽  
pp. 3092
Author(s):  
Mohammad S. M. Almulhim ◽  
Dexter V. L. Hunt ◽  
Chris D. F. Rogers

In Saudi Arabia, the carbon footprint and energy use that results from using concrete in construction is a major negative contributor to the environmental effects of building materials. Likewise, the impact of annual cooling and heating energy demands has an equally prominent role to play. These demands need to be assessed and benchmarked in order that reduction targets can be set. Saudi Arabia presents its own unique context and local conditions, which creates a challenge when utilizing generic frameworks for assessing the environmental impact of domestic buildings. In meeting this aim, this paper presents a resilience and environmental sustainability assessment framework (RESAF) developed specifically for domestic buildings in Saudi Arabia. RESAF helps designers/builders to minimize the carbon footprint of the building fabric and reduce in-use energy demands of domestic buildings in Saudi Arabia. This paper shows how this framework can be used to reduce, by approximately 23%, the carbon impact from construction materials, primarily by substituting a portion of cement for pulverized fly ash (PFA) or ground granulated blast furnace slag (GGBS). A reduction of 19% in annual cooling and heating energy demand were additionally achieved throughout the building’s life, simply by increasing insulation and using triple-glazed windows. The importance of passing these alternative solutions through the resilience filter is highlighted, not least questioning whether they are really fit-for-purpose.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2925
Author(s):  
Bernard Zawada ◽  
Joanna Rucińska

The impact of thermal comfort demand on the renovation process was carried out on an optimization basis for the thermo-modernization process of an exemplary single-family home located in Warsaw. The verified TRNSYS simulation program was used to generate a set of variants of building modernization solutions. This variants set was used afterwards as a database for optimization. The analysis performed includes the internal air temperature, indicators of thermal comfort (PPD), and annual energy demand for heating and cooling, and investment costs of modernization building. The results indicated the importance of analyzing various variants of building modernization solutions. Performing modernization without analyzing its effects can have positive as well as negative consequences, e.g., achieving a significant reduction in the primary energy demands at the expense of the deteriorated thermal comfort of users. It was shown that separate analysis of indicators leads to completely different solutions and should not be recommended during modernization of single-family buildings.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3311
Author(s):  
Víctor Pérez-Andreu ◽  
Carolina Aparicio-Fernández ◽  
José-Luis Vivancos ◽  
Javier Cárcel-Carrasco

The number of buildings renovated following the introduction of European energy-efficiency policy represents a small number of buildings in Spain. So, the main Spanish building stock needs an urgent energy renovation. Using passive strategies is essential, and thermal characterization and predictive tests of the energy-efficiency improvements achieving acceptable levels of comfort for their users are urgently necessary. This study analyzes the energy performance and thermal comfort of the users in a typical Mediterranean dwelling house. A transient simulation has been used to acquire the scope of Spanish standards for its energy rehabilitation, taking into account standard comfort conditions. The work is based on thermal monitoring of the building and a numerical validated model developed in TRNSYS. Energy demands for different models have been calculated considering different passive constructive measures combined with real wind site conditions and the behavior of users related to natural ventilation. This methodology has given us the necessary information to decide the best solution in relation to energy demand and facility of implementation. The thermal comfort for different models is not directly related to energy demand and has allowed checking when and where the measures need to be done.


2015 ◽  
Vol 650 ◽  
pp. 82-90 ◽  
Author(s):  
D. Kannamma ◽  
A. Meenatchi Sundaram

The climatic conditions in a man-made urban environment may differ appreciably from those in the surrounding natural or rural environs.... each urban man-made buildings, roads, parking area, factories......creates around and above it a modified climate with which it interacts [1].Outdoor thermal comfort has gained importance in thermal comfort studies especially in tropical countries. In country like India, culturally the activities are spread both indoors and outdoors. Therefore the need for ambient outdoor environment gains importance. As there are many factors that contribute to outdoor thermal comfort (climatic factors and physical factors), this study aims in analyzing the impact of building material contribution, in an institutional courtyard. In order to understand the thermal contribution of various building materials and to suggest material choice to designers, ENVIMET is used for simulation purpose. The outdoor thermal comfort index employed in this study is PET (Physiological Equivalent Temperature), calibrated using RAYMAN.


Author(s):  
Pritam Roy

Abstract: This research paper presents the investigation of design consideration to achieve thermal comfort and the warm humid climatic zone of West Bengal is considered as the primary study area for the investigation. The varying thermal comfort behavior of humans in different climate conditions and seasons clearly demonstrates that the building design strategy must conform with the region of the building. In this paper, first studying the climatic characteristics of the warm humid region design factors are selected like building materials, cross ventilation, building orientation, roofing orientation, and materials, etc. After that, all those design factors are studied and the effect of all those factors on building in various conditions is observed. Keywords: Warm Humid Climate, Thermal Comfort, Building Materials, U-value, Cross Ventilation, Building Orientation


2020 ◽  
Vol 70 (4) ◽  
pp. 482-492
Author(s):  
Hongmei Gu ◽  
Shaobo Liang ◽  
Richard Bergman

Abstract Mass timber building materials such as cross-laminated timber (CLT) have captured attention in mid- to high-rise building designs because of their potential environmental benefits. The recently updated multistory building code also enables greater utilization of these wood building materials. The cost-effectiveness of mass timber buildings is also undergoing substantial analysis. Given the relatively new presence of CLT in United States, high front-end construction costs are expected. This study presents the life-cycle cost (LCC) for a 12-story, 8,360-m2 mass timber building to be built in Portland, Oregon. The goal was to assess its total life-cycle cost (TLCC) relative to a functionally equivalent reinforced-concrete building design using our in-house-developed LCC tool. Based on commercial construction cost data from the RSMeans database, a mass timber building design is estimated to have 26 percent higher front-end costs than its concrete alternative. Front-end construction costs dominated the TLCC for both buildings. However, a decrease of 2.4 percent TLCC relative to concrete building was observed because of the estimated longer lifespan and higher end-of-life salvage value for the mass timber building. The end-of-life savings from demolition cost or salvage values in mass timber building could offset some initial construction costs. There are minimal historical construction cost data and lack of operational cost data for mass timber buildings; therefore, more studies and data are needed to make the generalization of these results. However, a solid methodology for mass timber building LCC was developed and applied to demonstrate several cost scenarios for mass timber building benefits or disadvantages.


2016 ◽  
Vol 11 (2) ◽  
pp. 116-130 ◽  
Author(s):  
Karen Kensek ◽  
Ye Ding ◽  
Travis Longcore

Green buildings should respect nature and endeavor to mitigate harmful effects to the environment and occupants. This is often interpreted as creating sustainable sites, consuming less energy and water, reusing materials, and providing excellent indoor environmental quality. Environmentally friendly buildings should also consider literally the impact that they have on birds, millions of them. A major factor in bird collisions with buildings is the choice of building materials. These choices are usually made by the architect who may not be aware of the issue or may be looking for guidance from certification programs such as LEED. As a proof of concept for an educational tool, we developed a software-assisted approach to characterize whether a proposed building design would earn a point for the LEED Pilot Credit 55: Avoiding Bird Collisions. Using the visual programming language Dynamo with the common building information modeling software Revit, we automated the assessment of designs. The approach depends on parameters that incorporate assessments of bird threat for façade materials, analyzes building geometry relative to materials, and processes user input on building operation to produce the assessment.


2019 ◽  
Vol 887 ◽  
pp. 428-434
Author(s):  
Dorcas A. Ayeni ◽  
Olaniyi O. Aluko ◽  
Morisade O. Adegbie

Man requires a thermal environment that is within the range of his adaptive capacity and if this fluctuates outside the normal, a reaction is required beyond its adaptive capacity which results to health challenges. Therefore, the aim of building design in the tropical region is to minimize the heat gain indoors and enhance evaporative cooling of the occupants of the space so as to achieve thermal comfort. In most cases, the passive technologies are not adequate in moderating indoor climate for human comfort thereby relying on active energy technique to provide the needed comfort for the building users. The need for the use of vegetation as a panacea for achieving comfortable indoor thermal conditions in housing is recognised by architects globally. However, the practice by architects in Nigeria is still at the lower ebb. The thrust of this paper therefore is to examine the impact of vegetation in solar control reducing thermal discomfort in housing thereby enhancing the energy performance of the buildings. Using secondary data, the paper identifies the benefits of vegetation in and around buildings to include improvement of indoor air quality through the aesthetics quality of the environment and concludes that vegetation in and around building will in no small measure contributes to saving energy consumption.


Sign in / Sign up

Export Citation Format

Share Document