scholarly journals The formation and mitigation of nitrate pollution: Comparison between urban and suburban environments

2021 ◽  
Author(s):  
Suxia Yang ◽  
Bin Yuan ◽  
Yuwen Peng ◽  
Shan Huang ◽  
Wei Chen ◽  
...  

Abstract. Ambient nitrate has been of increasing concern in PM2.5, while there are still large uncertainties in quantifying the formation of nitrate aerosol. The formation pathways of nitrate aerosol at an urban site and a suburban site in the Pearl River Delta (PRD) are investigated using an observation-constrained box model. Throughout the campaigns, aerosol pollution episodes were constantly accompanied with the increase of nitrate concentrations and fractions at both urban and suburban sites. The simulations demonstrate that chemical reactions in the daytime and at night both contributed significantly to formation of nitrate in the boundary layer at the two sites. However, nighttime reactions predominately occurred aloft in the residual layer at the urban site and downward transport from the residual layer in the morning are important source (53 %) for surface nitrate at the urban site, whereas similar amounts of nitrate were produced in the nocturnal boundary layer and residual layer at the suburban site, which results in little downward transport of nitrate from the residual layer to the ground at the suburban site. We show that nitrate formation was in the volatile organic compounds (VOCs)-limited regime at the urban site, and in the transition regime at the suburban site, identical to the response of ozone at both sites. The reduction of VOCs emissions can be an efficient approach to mitigate nitrate in both urban and suburban areas through influencing hydroxyl radical (OH) and N2O5 production, which will also be beneficial for the synergistic control of regional ozone pollution. The results highlight that the relative importance of nitrate formation pathways can be site-specific, and the quantitative understanding of various pathways of nitrate formation will provide insights for developing nitrate mitigation strategies.

2019 ◽  
Author(s):  
Kun Li ◽  
Junling Li ◽  
Shengrui Tong ◽  
Weigang Wang ◽  
Ru-Jin Huang ◽  
...  

Abstract. Measurements of volatile organic compounds (VOCs) were performed at a suburban site and an urban site in Beijing during the winter of 2014–2015. The VOC concentrations and emission ratios (ERs) to CO were compared at these two sites. It is found that though the VOC concentrations at the urban site are 2.67 ± 1.15 times of those at the suburban site, the ERs are similar (within a factor of 1.5). It is indicated that: (1) the VOCs at suburban areas are mainly from the transportation from the urban areas; (2) the ERs measured at the urban areas are also valid for the surrounding suburban areas. By comparing the diurnal variations and the contribution of anthropogenic emissions at both sites, we find that the photochemical processes are very active at the urban site, and these processes play an important role in the daytime oxygenated VOCs (OVOCs) formation. The methanol at the urban site and the formic acid at the suburban site probably have additional sources, which are attributed to be solvent use and soil/agriculture, respectively. The festival effects from Chinese New Year (CNY) were investigated. The VOC concentrations decreased ~ 60 % during CNY holidays, probably due to the population migration during festival holidays. In addition, fireworks are found to be an important source of acetonitrile, aromatics, and some OVOCs during CNY festival, and should be controlled more strictly. This study provides key characteristics of wintertime VOCs in suburban and urban Beijing, and has implications for better understanding the atmospheric chemistry of VOCs in and around this megacity.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 326
Author(s):  
Chih-Chung Chang ◽  
Hwa-Kwang Yak ◽  
Jia-Lin Wang

Continuous measurements of ozone and its precursors were performed at sites in two Chinese megacities, i.e., an urban site in Beijing and a suburban site in the Pearl River Delta (PRD). At both sites, the total oxidants (O3 + NO2) varied with the ratio of ethylbenzene to m,p-xylenes, which serves as an indicator of photochemical aging. An observation-based method (OBM) was derived for calculating the photochemical consumption of individual non-methane hydrocarbons (NMHCs) based on the observed NMHC concentrations and the ratio of ethylbenzene to m,p-xylenes. The results show a strong correlation between the oxidant level and the derived consumption of precursors at the two sites (R2 = 0.81 for the PRD site and R2 = 0.83 for the Beijing site), demonstrating a strong cause–effect relationship. The relative “consumption efficiency” among NMHCs was calculated based on the integrated amount of hydroxyl radicals derived from the ratio of ethylbenzene to xylenes. Thus, the percent contributions to ozone formation from each individual NMHC can be calculated. This concept of consumption is purely observation-based and provides an easy way to bypass complicated modeling and the necessity of knowing instantaneous concentrations of hydroxyl radicals, which are highly illusive in nature.


2019 ◽  
Vol 19 (12) ◽  
pp. 8021-8036 ◽  
Author(s):  
Kun Li ◽  
Junling Li ◽  
Shengrui Tong ◽  
Weigang Wang ◽  
Ru-Jin Huang ◽  
...  

Abstract. Measurements of volatile organic compounds (VOCs) were performed at a suburban site and an urban site in Beijing during the winter of 2014–2015. The VOC concentrations and emission ratios (ERs) to CO were compared at these two sites. It is found that though the VOC concentrations at the urban site are 2.67±1.15 times of those at the suburban site, the ERs are similar (within a factor of 1.5). It is indicated that (1) the VOCs at suburban areas are mainly from the transportation from the urban areas and (2) the ERs measured at the urban areas are also valid for the surrounding suburban areas. By comparing the diurnal variations and the contribution of anthropogenic emissions at both sites, we find that the photochemical processes are very active at the urban site, and these processes play an important role in the daytime oxygenated VOC (OVOC) formation. The methanol at the urban site and the formic acid at the suburban site probably have additional sources, which are attributed to be solvent use and soil/agriculture, respectively. The festival effects from the Chinese New Year (CNY) were investigated. The VOC concentrations decreased ∼60 % during CNY holidays, probably due to the population migration during festival holidays. In addition, fireworks are found to be an important source of acetonitrile, aromatics, and some OVOCs during the CNY festival and should be controlled more strictly. This study provides key characteristics of wintertime VOCs in suburban and urban Beijing and has implications for better understanding the atmospheric chemistry of VOCs in and around this megacity.


2021 ◽  
Author(s):  
Hannah Marley ◽  
Kim Dirks ◽  
Andrew Neverman ◽  
Ian McKendry ◽  
Jennifer Salmond

<p><span><span>A brown air pollution haze that forms over some international cities during the winter has been found to be associated with negative health outcomes and high surface air pollution levels. Previous research has demonstrated a well-established link between the structure of the atmospheric boundary layer (ABL) and surface air quality; however, the degree to which the structure of the ABL influences for formation of local-</span></span><span><span>scale</span></span><span><span> brown haze is unknown. Using continuous ceilometer data covering seven consecutive winters, we investigate the influence of the structure of the ABL in relation to surface air pollution and brown haze formation over an urban area of complex coastal terrain in the Southern Hemisphere city of Auckland, New Zealand. Our results suggest the depth and evolution of the ABL has a strong influence on severe brown haze formation. When days with severe brown haze are compared with those when brown haze is expected but not observed (based on favorable meteorology and high surface air pollution levels), days with severe brown haze are found to coincide with significantly shallower daytime convective boundary layers (~ 48% lower), and the nights preceding brown haze formation are found to have significantly shallower nocturnal boundary layers (~ 28% lower). On severe brown haze days the growth rate during the morning transition phase from a nocturnal boundary layer to a convective daytime boundary layer is found to be significantly reduced (70 m h</span></span><sup><span><span>-1</span></span></sup><span><span>) compared to days on which brown haze is expected but not observed (170 m h</span></span><sup><span><span>-1</span></span></sup><span><span>). Compared with moderate brown haze, severe brown haze conditions are found to be associated with a significantly higher proportion of days with a distinct residual layer present in the ceilometer profiles, suggesting the entrainment of residual layer pollutants may contribute to the severity of the haze. This study illustrates the complex interaction between the ABL structure, air pollution, and the presence of brown haze, and demonstrates the utility of a ceilometer instrument in understanding and predicting the occurrence of brown haze events. </span></span></p>


2019 ◽  
Vol 19 (18) ◽  
pp. 11953-11968
Author(s):  
Horst Fischer ◽  
Raoul Axinte ◽  
Heiko Bozem ◽  
John N. Crowley ◽  
Cheryl Ernest ◽  
...  

Abstract. Hydrogen peroxide (H2O2) plays a significant role in the oxidizing capacity of the atmosphere. It is an efficient oxidant in the liquid phase and serves as a temporary reservoir for the hydroxyl radical (OH), the most important oxidizing agent in the gas phase. Due to its high solubility, removal of H2O2 due to wet and dry deposition is efficient, being a sink of HOx (OH+HO2) radicals. In the continental boundary layer, the H2O2 budget is controlled by photochemistry, transport and deposition processes. Here we use in situ observations of H2O2 and account for chemical source and removal mechanisms to study the interplay between these processes. The data were obtained during five ground-based field campaigns across Europe from 2008 to 2014 and bring together observations in a boreal forest, two mountainous sites in Germany, and coastal sites in Spain and Cyprus. Most campaigns took place in the summer, while the measurements in the south-west of Spain took place in early winter. Diel variations in H2O2 are strongly site-dependent and indicate a significant altitude dependence. While boundary-layer mixing ratios of H2O2 at low-level sites show classical diel cycles with the lowest values in the early morning and maxima around local noon, diel profiles are reversed on mountainous sites due to transport from the nocturnal residual layer and the free troposphere. The concentration of hydrogen peroxide is largely governed by its main precursor, the hydroperoxy radical (HO2), and shows significant anti-correlation with nitrogen oxides (NOx) that remove HO2. A budget calculation indicates that in all campaigns, the noontime photochemical production rate through the self-reaction of HO2 radicals was much larger than photochemical loss due to reaction with OH and photolysis, and that dry deposition is the dominant loss mechanism. Estimated dry deposition velocities varied between approximately 1 and 6 cm s−1, with relatively high values observed during the day in forested regions, indicating enhanced uptake of H2O2 by vegetation. In order to reproduce the change in H2O2 mixing ratios between sunrise and midday, a variable contribution from transport (10 %–100 %) is required to balance net photochemical production and deposition loss. Transport is most likely related to entrainment from the residual layer above the nocturnal boundary layer during the growth of the boundary layer in the morning.


2018 ◽  
Author(s):  
Jinhui Gao ◽  
Bin Zhu ◽  
Hui Xiao ◽  
Hanqing Kang ◽  
Chen Pan

Abstract. As an important solar-radiation absorbing aerosol, the effect of black carbon (BC) on surface ozone, by influencing photolysis rate, has been widely discussed by offline model studies. However, BC-boundary layer (BL) interactions also influence surface ozone. Using the online model simulations and processes analysis, we demonstrate the significant impact of BC-BL interaction on surface ozone. The absorbing effect of BC heats the air above the BL and suppresses BL development, which eventually leads to changes in the contributions of ozone through chemical and physical processes (photochemistry, vertical mixing, and advection). Different from previous offline model studies, BL suppression leads large amounts of ozone precursors being confined below the BL which offsetting the influence from the reduction of photolysis rate, thus enhancing ozone photochemical formation before noon. Furthermore, the changes in physical process show a more significant influence on surface ozone. The weakened turbulence entrains much less ozone from the overlying ozone-rich air down to surface. As a result, the net contribution of ozone from physical and chemical processes leads to surface ozone reduction before noon. The maximum reduction reaches to 16.4 ppb at 12:00. In the afternoon, the changes in chemical process are small which influence inconspicuously to surface ozone. However, physical process still influences the surface ozone significantly. Due to the delayed development of the BL, less vertically mixed BL continues to show an obvious ozone gradient near the top of the BL. Therefore, more ozone aloft can be entrained down to the surface, offsetting the surface ozone reduction. Comparing all the changes in the contributions of processes, the change in the contribution of vertical mixing plays a more important role in impacting surface ozone. Our results show the great impacts of BC-BL interactions on surface ozone. And more attention should be paid on the mechanism of aerosol-BL interactions when we deal with the ozone pollution control in China.


2019 ◽  
Vol 46 (9) ◽  
pp. 4971-4979 ◽  
Author(s):  
C. C. Womack ◽  
E. E. McDuffie ◽  
P. M. Edwards ◽  
R. Bares ◽  
J. A. Gouw ◽  
...  

2017 ◽  
Vol 30 (17) ◽  
pp. 6661-6682 ◽  
Author(s):  
Shira Raveh-Rubin

Dry-air intrusions (DIs) are dry, deeply descending airstreams from the upper troposphere toward the planetary boundary layer (PBL). The significance of DIs spans a variety of aspects, including the interaction with convection, extratropical cyclones and fronts, the PBL, and extreme surface weather. Here, a Lagrangian definition for DI trajectories is used and applied to ECMWF interim reanalysis (ERA-Interim) data. Based on the criterion of a minimum descent of 400 hPa during 48 h, a first global Lagrangian climatology of DI trajectories is compiled for the years 1979–2014, allowing quantitative understanding of the occurrence and variability of DIs, as well as the dynamical and thermodynamical interactions that determine their impact. DIs occur mainly in winter. While traveling equatorward from 40°–50° latitude, DIs typically reach the lower troposphere (with maximum frequencies of ~10% in winter) in the storm-track regions, as well as over the Mediterranean Sea, Arabian Sea, and eastern North Pacific, off the western coast of South America, South Africa, and Australia, and across the Antarctic coast. The DI descent is nearly adiabatic, with a mean potential temperature decrease of 3 K in two days. Relative humidity drops strongly during the first descent day and increases in the second day, because of mixing into the moist PBL. Significant destabilization of the lower levels occurs beneath DIs, accompanied by increased 10-m wind gusts, intense surface heat and moisture fluxes, and elevated PBL heights. Interestingly, only 1.2% of all DIs are found to originate from the stratosphere.


Sign in / Sign up

Export Citation Format

Share Document