scholarly journals Measurement report: Ice nucleating abilities of biomass burning, African dust, and sea spray aerosol particles over the Yucatán Peninsula

2021 ◽  
Vol 21 (6) ◽  
pp. 4453-4470
Author(s):  
Fernanda Córdoba ◽  
Carolina Ramírez-Romero ◽  
Diego Cabrera ◽  
Graciela B. Raga ◽  
Javier Miranda ◽  
...  

Abstract. Most precipitation from deep clouds over the continents and in the intertropical convergence zone is strongly influenced by the presence of ice crystals whose formation requires the presence of ice nucleating particles (INPs). Although there are a large number of INP sources, the ice nucleating abilities of aerosol particles originating from oceans, deserts, and wildfires are poorly described at tropical latitudes. To fill this gap in knowledge, the National Autonomous University of Mexico micro-orifice uniform deposit impactor droplet freezing technique (UNAM-MOUDI-DFT) was constructed to measure the ice nucleating activity of aerosol samples that were collected in Sisal and Mérida, Yucatán (Mexico) under the influence of cold fronts, biomass burning (BB), and African dust (AD) intrusions during five short-term field campaigns between January 2017 and July 2018. The three different aerosol types were distinguished by their physicochemical properties. Marine aerosol (MA), BB, and AD air masses were found to contain INPs; the highest concentrations were in AD (from 0.071 to 36.07 L−1 at temperatures between −18 and −27 ∘C), followed by MA (from 0.068 to 18.90 L−1 at temperatures between −15 and −28 ∘C) and BB (from 0.063 to 10.21 L−1 at temperatures between −20 and −27 ∘C). However, MA had the highest surface active site densities (ns) between −15 and −30 ∘C. Additionally, supermicron particles contributed more than 72 % of the total INP concentration independent of aerosol type.

2020 ◽  
Author(s):  
Fernanda Córdoba ◽  
Carolina Ramirez-Romero ◽  
Diego Cabrera ◽  
Graciela B. Raga ◽  
Javier Miranda ◽  
...  

Abstract. Most precipitation from deep clouds over the continents and in the intertropical convergence zone is strongly influenced by the presence of ice crystals, whose formation requires the presence of ice nucleating particles (INP). Although there are a large number of INP sources, the ice nucleating abilities of aerosol particles emitted from oceans, deserts, and wildfires are poorly described at tropical latitudes. To fill this gap in knowledge, the UNAM-MicroOrifice Uniform Deposit Impactor-Droplet Freezing Technique (UNAM-MOUDI-DFT) was built. Aerosol samples were collected in Sisal and Merida, Yucatan (Mexico) under the influence of cold fronts, biomass burning (BB), and African dust (AD), during five short-term field campaigns between January 2017 and July 2018. The three different aerosol types were distinguished by characterizing their physicochemical properties. Marine aerosol (MA), BB, and AD air masses were found to contain INP; the highest concentrations were found for AD (from 0.071 L−1 to 36.07 L−1), followed by MA (from 0.068 L−1 to 18.90 L−1), and BB (from 0.063 L−1 to 10.21 L−1). However, MA had the highest surface active site density (ns) between −15 °C and −30 °C. Additionally, supermicron particles contributed more than 72 % of the total INP concentration independent of aerosol type; MA had the largest contribution from supermicron particles.


2019 ◽  
Vol 12 (7) ◽  
pp. 3789-3803 ◽  
Author(s):  
Sung-Kyun Shin ◽  
Matthias Tesche ◽  
Youngmin Noh ◽  
Detlef Müller

Abstract. This study proposes an aerosol-type classification based on the particle linear depolarization ratio (PLDR) and single-scattering albedo (SSA) provided in the AErosol RObotic NETwork (AERONET) version 3 level 2.0 inversion product. We compare our aerosol-type classification with an earlier method that uses fine-mode fraction (FMF) and SSA. Our new method allows for a refined classification of mineral dust that occurs as a mixture with other absorbing aerosols: pure dust (PD), dust-dominated mixed plume (DDM), and pollutant-dominated mixed plume (PDM). We test the aerosol classification at AERONET sites in East Asia that are frequently affected by mixtures of Asian dust and biomass-burning smoke or anthropogenic pollution. We find that East Asia is strongly affected by pollution particles with high occurrence frequencies of 50 % to 67 %. The distribution and types of pollution particles vary with location and season. The frequency of PD and dusty aerosol mixture (DDM+PDM) is slightly lower (34 % to 49 %) than pollution-dominated mixtures. Pure dust particles have been detected in only 1 % of observations. This suggests that East Asian dust plumes generally exist in a mixture with pollution aerosols rather than in pure form. In this study, we have also considered data from selected AERONET sites that are representative of anthropogenic pollution, biomass-burning smoke, and mineral dust. We find that average aerosol properties obtained for aerosol types in our PLDR–SSA-based classification agree reasonably well with those obtained at AERONET sites representative for different aerosol types.


2020 ◽  
Vol 20 (8) ◽  
pp. 4735-4756 ◽  
Author(s):  
Cyrielle Denjean ◽  
Thierry Bourrianne ◽  
Frederic Burnet ◽  
Marc Mallet ◽  
Nicolas Maury ◽  
...  

Abstract. Southern West Africa (SWA) is an African pollution hotspot but a relatively poorly sampled region of the world. We present an overview of in situ aerosol optical measurements collected over SWA in June and July 2016 as part as of the DACCIWA (Dynamics-Aerosol-Chemistry-Clouds Interactions in West Africa) airborne campaign. The aircraft sampled a wide range of air masses, including anthropogenic pollution plumes emitted from the coastal cities, long-range transported biomass burning plumes from central and southern Africa and dust plumes from the Sahara and Sahel region, as well as mixtures of these plumes. The specific objective of this work is to characterize the regional variability of the vertical distribution of aerosol particles and their spectral optical properties (single scattering albedo: SSA, asymmetry parameter, extinction mass efficiency, scattering Ångström exponent and absorption Ångström exponent: AAE). The first findings indicate that aerosol optical properties in the planetary boundary layer were dominated by a widespread and persistent biomass burning loading from the Southern Hemisphere. Despite a strong increase in aerosol number concentration in air masses downwind of urban conglomerations, spectral SSA were comparable to the background and showed signatures of the absorption characteristics of biomass burning aerosols. In the free troposphere, moderately to strongly absorbing aerosol layers, dominated by either dust or biomass burning particles, occurred occasionally. In aerosol layers dominated by mineral dust particles, SSA varied from 0.81 to 0.92 at 550 nm depending on the variable proportion of anthropogenic pollution particles externally mixed with the dust. For the layers dominated by biomass burning particles, aerosol particles were significantly more light absorbing than those previously measured in other areas (e.g. Amazonia, North America), with SSA ranging from 0.71 to 0.77 at 550 nm. The variability of SSA was mainly controlled by variations in aerosol composition rather than in aerosol size distribution. Correspondingly, values of AAE ranged from 0.9 to 1.1, suggesting that lens-coated black carbon particles were the dominant absorber in the visible range for these biomass burning aerosols. Comparison with the literature shows a consistent picture of increasing absorption enhancement of biomass burning aerosol from emission to remote location and underscores that the evolution of SSA occurred a long time after emission. The results presented here build a fundamental basis of knowledge about the aerosol optical properties observed over SWA during the monsoon season and can be used in climate modelling studies and satellite retrievals. In particular and regarding the very high absorbing properties of biomass burning aerosols over SWA, our findings suggest that considering the effect of internal mixing on absorption properties of black carbon particles in climate models should help better assess the direct and semi-direct radiative effects of biomass burning particles.


2019 ◽  
Author(s):  
Cyrielle Denjean ◽  
Thierry Bourrianne ◽  
Frederic Burnet ◽  
Marc Mallet ◽  
Nicolas Maury ◽  
...  

Abstract. Southern West Africa (SWA) is an African pollution hotspot but a relatively poorly sampled region of the world. We present an overview of in-situ aerosol optical measurements collected over SWA in June and July 2016 as part as the DACCIWA (Dynamics–Aerosol–Chemistry–Clouds Interactions in West Africa) airborne campaign. The aircraft sampled a wide range of air masses, including anthropogenic pollution plumes emitted from the coastal cities, long-range transported biomass burning plumes from Central and Southern Africa and dust plumes from the Sahara and Sahel region, as well as mixtures of these plumes. The specific objective of this work is to characterize the regional variability of the vertical distribution of aerosol particles and their spectral optical properties (single scattering albedo: SSA, asymmetry parameter, extinction mass efficiency, scattering Ångström exponent and absorption Ångström exponent: AAE). First findings indicate that aerosol optical properties in the planetary boundary layer were dominated by a widespread and persistent biomass burning loading from the Southern Hemisphere. Despite a strong increase of aerosol number concentration in air masses downwind of urban conglomerations, spectral SSA were comparable to the background and showed signatures of the absorption characteristics of biomass burning aerosols. In the free troposphere, moderately to strongly absorbing aerosol layers, dominated by either dust or biomass burning particles, occurred occasionally. In aerosol layers dominated by mineral dust particles, SSA varied from 0.81 to 0.92 at 550 nm depending on the variable proportion of anthropogenic pollution particles externally mixed with the dust. Biomass burning aerosol particles were significantly more light absorbing than those previously measured in other areas (e.g. Amazonia, North America) with SSA ranging from 0.71 to 0.77 at 550 nm. The variability of SSA was mainly controlled by variations in aerosol composition rather than in aerosol size distribution. Correspondingly, values of AAE ranged from 0.9 to 1.1, suggesting that lens-coated black carbon particles were the dominant absorber in the visible range for these biomass burning aerosols. Comparison with literature shows a consistent picture of increasing absorption enhancement of biomass burning aerosol from emission to remote location and underscores that the evolution of SSA occurred a long time after emission. The results presented here build a fundamental basis of knowledge about the aerosol optical properties observed over SWA during the monsoon season and can be used in climate modelling studies and satellite retrievals. In particular and regarding the very high absorbing properties of biomass burning aerosols over SWA, our findings suggest that considering the effect of internal mixing on absorption properties of black carbon particles in climate models should help better assessing the direct and semi-direct radiative effects of biomass burning particles.


2018 ◽  
Author(s):  
Meng Si ◽  
Victoria E. Irish ◽  
Ryan H. Mason ◽  
Jesús Vergara-Temprado ◽  
Sarah Hanna ◽  
...  

Abstract. Despite the importance of ice-nucleating particles (INPs) for climate and precipitation, our understanding of these particles is far from complete. Here, we investigated INPs at three coastal marine sites in Canada, two at mid-latitude (Amphitrite Point and Labrador Sea), and one in the Arctic (Lancaster Sound). At all three sites, the ice-nucleating efficiency on a per number basis (expressed as the fraction of aerosol particles acting as an INP) was strongly dependent on the size. For example, at diameters of around 0.2 µm, approximately 1 in 106 particles acted as an INP at −25 ºC, while at diameters of around 8 µm, approximately 1 in 10 particles acted as an INP at −25 ºC. The ice-nucleating efficiency on a per surface area basis (expressed as the surface active site density, ns) was also dependent on the size, with larger particles being more efficient at nucleating ice. The ns values of supermicron particles at Amphitrite Point and Labrador Sea were larger than previously measured ns values of sea spray aerosol, suggesting that sea spray aerosol was not a major contributor to the supermicron INP population at these two sites. Consistent with this observation, a global model of INP concentrations under-predicted the INP concentrations when assuming only marine organics as INPs. On the other hand, assuming only K-feldspar as INPs, the same model was able to reproduce the measurements at a freezing temperature of −25 ºC, but under-predicted INP concentrations at −15 ºC, suggesting that the model is missing a source of INPs active at a freezing temperature of −15 ºC.


2019 ◽  
Author(s):  
Sung-Kyun Shin ◽  
Matthias Tesche ◽  
Youngmin Noh ◽  
Detlef Müller

Abstract. This study proposes an aerosol-type classification based on the particle linear depolarization ratio (PLDR) and single scattering albedo (SSA) provided in the AErosol RObotic NETwork (AERONET) version 3 level 2.0 inversion product. We compare our aerosol-type classification with an earlier method that uses fine-mode fraction (FMF) and SSA. Our new method allows for a refined classification of mineral dust that occurs as a mixture with other absorbing aerosols: pure dust (PD), dust-dominated mixed plume (DDM), and pollutant-dominated mixed plume (PDM). We test the aerosol classification at AERONET sites in East Asia that are frequently affected by mixtures of Asian dust and biomass-burning smoke or anthropogenic pollution. We find that East Asia is strongly affected by pollution particles with high occurrence frequencies of 50 % to 67 %. The distribution and types of pollution particles vary with location and season. The frequency of PD and dusty aerosol mixture (DDM+PDM) is slightly lower (34 % to 49 %) than pollution-dominated mixtures. Pure dust particles have been detected in only 1 % of observations. This suggests that East Asian dust plumes generally exist in a mixture with pollution aerosols rather than in pure form. In this study, we have also considered data from selected AERONET sites that are representative of anthropogenic pollution, biomass-burning smoke, and mineral dust. We find that average aerosol properties obtained for aerosol types in our PLDR-SSA-based classification agree reasonably well with those obtained at AERONET sites representative for different aerosol types.


2021 ◽  
Author(s):  
Charles A. Brock ◽  
Karl D. Froyd ◽  
Maximilian Dollner ◽  
Christina J. Williamson ◽  
Gregory Schill ◽  
...  

Abstract. In situ measurements of aerosol microphysical, chemical, and optical properties were made during global-scale flights from 2016–2018 as part of the Atmospheric Tomography Mission (ATom). A NASA DC-8 aircraft flew from ~84 °N to ~86 °S latitude over the Pacific, Atlantic, Arctic, and Southern oceans while profiling nearly continuously between altitudes of ~160 m and ~12 km. These global circuits were made once each season. Particle size distributions measured in the aircraft cabin at dry conditions and with an underwing probe at ambient conditions were combined with bulk and single-particle composition observations and measurements of water vapor, pressure and temperature to estimate aerosol hygroscopicity and hygroscopic growth factors and calculate size distributions at ambient relative humidity. These reconstructed, composition-resolved ambient size distributions were used to estimate intensive and extensive aerosol properties, including single scatter albedo, asymmetry parameter, extinction, absorption, Ångström exponents, and aerosol optical depth (AOD) at several wavelengths, as well as CCN concentrations at fixed supersaturations and lognormal fits to four modes. Dry extinction and absorption were compared with direct, in situ measurements, and AOD derived from the extinction profiles was compared with remotely sensed AOD measurements from the ground-based Aerosol Robotic Network (AERONET); these calculated parameters were in agreement with the direct observations within expected uncertainties. The purpose of this work is to describe the methodology by which ambient aerosol properties are estimated from the in situ measurements, provide statistical descriptions of the aerosol characteristics of different remote air mass types, examine the contributions to AOD from different aerosol types in different air masses, and provide an entry point to the ATom aerosol database. The contributions of different aerosol types (dust, sea salt, biomass burning, etc.) to AOD generally align with expectations based on location of the profiles relative to continental sources of aerosols, with sea salt and aerosol water dominating the column extinction in most remote environments and dust and biomass burning (BB) particles contributing substantially to AOD, especially downwind of the African continent. Contributions of dust and BB aerosols to AOD were also significant in the free troposphere over the North Pacific. Comparisons of lognormally fitted size distribution parameters to values in a database commonly used in global models show significant differences in the mean diameters and standard deviations for accumulation-mode particles and coarse-mode dust. In contrast, comparisons of lognormal parameters derived from the ATom data with previously published ship-borne measurements in the remote marine boundary layer show general agreement. The dataset resulting from this work can be used to improve global-scale representation of climate-relevant aerosol properties in remote air masses through comparison with output from global models and with assumptions used in retrievals of aerosol properties from both ground-based and satellite remote sensing.


2019 ◽  
Vol 19 (6) ◽  
pp. 3557-3578 ◽  
Author(s):  
Martin Osborne ◽  
Florent F. Malavelle ◽  
Mariana Adam ◽  
Joelle Buxmann ◽  
Jaqueline Sugier ◽  
...  

Abstract. On 15–16 October 2017, ex-hurricane Ophelia passed to the west of the British Isles, bringing dust from the Sahara and smoke from Portuguese forest fires that was observable to the naked eye and reported in the UK's national press. We report here detailed observations of this event using the UK operational lidar and sun-photometer network, established for the early detection of aviation hazards, including volcanic ash. We also use ECMWF ERA5 wind field data and MODIS imagery to examine the aerosol transport. The observations, taken continuously over a period of 30 h, show a complex picture, dominated by several different aerosol layers at different times and clearly correlated with the passage of different air masses associated with the intense cyclonic system. A similar evolution was observed at several sites, with a time delay between them explained by their different location with respect to the storm and associated meteorological features. The event commenced with a shallow dust layer at 1–2 km in altitude and culminated in a deep and complex structure that lasted ∼12 h at each site over the UK, correlated with the storm's warm sector. For most of the time, the aerosol detected was dominated by mineral dust mixtures, as highlighted by depolarisation measurements, but an intense biomass burning aerosol (BBA) layer was observed towards the end of the event, lasting around 3 h at each site. The aerosol optical depth at 355 nm (AOD355) during the whole event ranged from 0.2 to 2.9, with the larger AOD correlated to the intense BBA layer. Such a large AOD is unprecedented in the UK according to AERONET records for the last 20 years. The Raman lidars permitted the measurement of the aerosol extinction coefficient at 355 nm, the particle linear depolarisation ratio (PLDR), and the lidar ratio (LR) and made the separation of the dust (depolarising) aerosol from other aerosol types possible. A specific extinction has also been computed to provide an estimate of the atmospheric concentration of both aerosol types separately, which peaked at 420±200 µg m−3 for the dust and 558±232 µg m−3 for the biomass burning aerosols. Back trajectories computed using the Numerical Atmospheric-dispersion Modelling Environment (NAME) were used to identify the sources and strengthen the conclusions drawn from the observations. The UK network represents a significant expansion of the observing capability in northern Europe, with instruments evenly distributed across Great Britain, from Camborne in Cornwall to Lerwick in the Shetland Islands, and this study represents the first attempt to demonstrate its capability and validate the methods in use. Its ultimate purpose will be the detection and quantification of volcanic plumes, but the present study clearly demonstrates the advanced capabilities of the network.


Sign in / Sign up

Export Citation Format

Share Document