scholarly journals Impacts of aerosol-cloud interactions on past and future changes in tropospheric composition

2009 ◽  
Vol 9 (12) ◽  
pp. 4115-4129 ◽  
Author(s):  
N. Unger ◽  
S. Menon ◽  
D. M. Koch ◽  
D. T. Shindell

Abstract. The development of effective emissions control policies that are beneficial to both climate and air quality requires a detailed understanding of all the feedbacks in the atmospheric composition and climate system. We perform sensitivity studies with a global atmospheric composition-climate model to assess the impact of aerosols on tropospheric chemistry through their modification on clouds, aerosol-cloud interactions (ACI). The model includes coupling between both tropospheric gas-phase and aerosol chemistry and aerosols and liquid-phase clouds. We investigate past impacts from preindustrial (PI) to present day (PD) and future impacts from PD to 2050 (for the moderate IPCC A1B scenario) that embrace a wide spectrum of precursor emission changes and consequential ACI. The aerosol indirect effect (AIE) is estimated to be −2.0 Wm−2 for PD-PI and −0.6 Wm−2 for 2050-PD, at the high end of current estimates. Inclusion of ACI substantially impacts changes in global mean methane lifetime across both time periods, enhancing the past and future increases by 10% and 30%, respectively. In regions where pollution emissions increase, inclusion of ACI leads to 20% enhancements in in-cloud sulfate production and ~10% enhancements in sulfate wet deposition that is displaced away from the immediate source regions. The enhanced in-cloud sulfate formation leads to larger increases in surface sulfate across polluted regions (~10–30%). Nitric acid wet deposition is dampened by 15–20% across the industrialized regions due to ACI allowing additional re-release of reactive nitrogen that contributes to 1–2 ppbv increases in surface ozone in outflow regions. Our model findings indicate that ACI must be considered in studies of methane trends and projections of future changes to particulate matter air quality.

2009 ◽  
Vol 9 (1) ◽  
pp. 4691-4725 ◽  
Author(s):  
N. Unger ◽  
S. Menon ◽  
D. T. Shindell ◽  
D. M. Koch

Abstract. The development of effective emissions control policies that are beneficial to both climate and air quality requires a detailed understanding of all the feedbacks in the atmospheric composition and climate system. We perform sensitivity studies with a global atmospheric composition-climate model to assess the impact of aerosols on tropospheric chemistry through their modification on clouds, the aerosol indirect effect (AIE). The model includes coupling between both tropospheric gas-phase and aerosol chemistry and aerosols and liquid-phase clouds. We investigate past impacts from preindustrial (PI) to present day (PD) and future impacts from PD to 2050 (for the moderate IPCC A1B scenario) that embrace a wide spectrum of precursor emission changes and consequential aerosol-cloud interactions. The AIE is estimated to be −2.0 W m−2 for PD–PI and −0.6 W m−2 for 2050–PD, at the high end of current estimates. Inclusion of aerosol-cloud interactions substantially impacts changes in global mean methane lifetime across both time periods, enhancing the past and future increases by 10% and 30%, respectively. In regions where pollution emissions increase, inclusion of aerosol-cloud effects leads to 20% enhancements in in-cloud sulfate production and ~10% enhancements in sulfate wet deposition that is displaced away from the immediate source regions. The enhanced in-cloud sulfate formation leads to larger increases in surface sulfate across polluted regions (~10–30%). Nitric acid wet deposition is dampened by 15–20% across the industrialized regions due to AIE allowing additional re-release of reactive nitrogen that contributes to 1–2 ppbv increases in surface ozone in outflow regions. Our model findings indicate that aerosol-cloud interactions must be considered in studies of methane trends and projections of future changes to particulate matter air quality.


2011 ◽  
Vol 11 (6) ◽  
pp. 17699-17757 ◽  
Author(s):  
D. J. Allen ◽  
K. E. Pickering ◽  
R. W. Pinder ◽  
B. H. Henderson ◽  
K. W. Appel ◽  
...  

Abstract. A lightning-nitrogen oxide (NO) algorithm is developed for the regional Community Multiscale Air Quality Model (CMAQ) and used to evaluate the impact of lightning-NO emissions (LNOx) on tropospheric photochemistry over the Eastern United States during the summer of 2006. The scheme assumes flash rates are proportional to the model convective precipitation rate but then adjusts the flash rates locally to match monthly average observations. Over the Eastern United States, LNOx is responsible for 20–25 % of the tropospheric nitrogen dioxide (NO2) column. This additional NO2 reduces the low-bias of simulated NO2 columns with respect to satellite-retrieved Dutch Ozone Monitoring Instrument NO2 (DOMINO) columns from 41 to 14 %. It also adds 10–20 ppbv to upper tropospheric ozone and 1.5–4.5 ppbv to 8-h maximum surface layer ozone, although, on average, the contribution of LNOx to surface ozone is 1–2 ppbv less on poor air quality days. Biases between modeled and satellite-retrieved tropospheric NO2 columns vary greatly between urban and rural locations. In general, CMAQ overestimates columns at urban locations and underestimates columns at rural locations. These biases are consistent with in situ measurements that also indicate that CMAQ has too much NO2 in urban regions and not enough in rural regions. However, closer analysis suggests that most of the differences between modeled and satellite-retrieved urban to rural ratios are likely a consequence of the horizontal and vertical smoothing inherent in columns retrieved by the Ozone Monitoring Instrument (OMI). Within CMAQ, LNOx increases wet deposition of nitrate by 50 % and total deposition of nitrogen by 11 %. This additional deposition reduces the magnitude of the CMAQ low-bias in nitrate wet deposition with respect to National Atmospheric Deposition monitors to near zero. In order to obtain an upper bound on the contribution of uncertainties in chemistry to upper tropospheric NOx low biases, sensitivity calculations with updated chemistry were run for the time period of the Intercontinental Chemical Transport Experiment (INTEX-A) field campaign (summer 2004). After adjusting for possible interferences in NO2 measurements and averaging over the entire campaign, these updates reduced 7–9 km biases from 32 to 17 % and 9–12 km biases from 57 to 46 %. While these changes lead to better agreement, a considerable NO2 low-bias remains in the uppermost troposphere.


2016 ◽  
Vol 16 (3) ◽  
pp. 1445-1457 ◽  
Author(s):  
E. D. Sofen ◽  
D. Bowdalo ◽  
M. J. Evans

Abstract. Surface ozone observations with modern instrumentation have been made around the world for more than 40 years. Some of these observations have been made as one-off activities with short-term, specific science objectives and some have been made as part of wider networks which have provided a foundational infrastructure of data collection, calibration, quality control, and dissemination. These observations provide a fundamental underpinning to our understanding of tropospheric chemistry, air quality policy, atmosphere–biosphere interactions, etc. brought together eight of these networks to provide a single data set of surface ozone observations. We investigate how representative this combined data set is of global surface ozone using the output from a global atmospheric chemistry model. We estimate that on an area basis, 25 % of the globe is observed (34 % land, 21 % ocean). Whereas Europe and North America have almost complete coverage, other continents, Africa, South America, Australia, and Asia (12–17 %) show significant gaps. Antarctica is surprisingly well observed (78 %). Little monitoring occurs over the oceans, with the tropical and southern oceans particularly poorly represented. The surface ozone over key biomes such as tropical forests and savanna is almost completely unmonitored. A chemical cluster analysis suggests that a significant number of observations are made of polluted air masses, but cleaner air masses whether over the land or ocean (especially again in the tropics) are significantly under-observed. The current network is unlikely to see the impact of the El Niño–Southern Oscillation (ENSO) but may be capable of detecting other planetary-scale signals. Model assessment and validation activities are hampered by a lack of observations in regions where the models differ substantially, as is the ability to monitor likely changes in surface ozone over the next century. Using our methodology we are able to suggest new sites which would help to close the gap in our ability to measure global surface ozone. An additional 20 surface ozone monitoring sites (a 20 % increase in the World Meteorological Organization Global Atmosphere Watch (WMO GAW) ozone sites or a 1 % increase in the total background network) located on 10 islands and in 10 continental regions would almost double the area observed. The cost of this addition to the network is small compared to other expenditure on atmospheric composition research infrastructure and would provide a significant long-term benefit to our understanding of the composition of the atmosphere, information which will also be available for consideration by air quality control managers and policy makers.


2020 ◽  
Vol 12 (3) ◽  
pp. 1649-1677 ◽  
Author(s):  
Nicolas Bellouin ◽  
Will Davies ◽  
Keith P. Shine ◽  
Johannes Quaas ◽  
Johannes Mülmenstädt ◽  
...  

Abstract. Radiative forcing provides an important basis for understanding and predicting global climate changes, but its quantification has historically been done independently for different forcing agents, has involved observations to varying degrees, and studies have not always included a detailed analysis of uncertainties. The Copernicus Atmosphere Monitoring Service reanalysis is an optimal combination of modelling and observations of atmospheric composition. It provides a unique opportunity to rely on observations to quantify the monthly and spatially resolved global distributions of radiative forcing consistently for six of the largest forcing agents: carbon dioxide, methane, tropospheric ozone, stratospheric ozone, aerosol–radiation interactions, and aerosol–cloud interactions. These radiative-forcing estimates account for adjustments in stratospheric temperatures but do not account for rapid adjustments in the troposphere. On a global average and over the period 2003–2017, stratospherically adjusted radiative forcing of carbon dioxide has averaged +1.89 W m−2 (5 %–95 % confidence interval: 1.50 to 2.29 W m−2) relative to 1750 and increased at a rate of 18 % per decade. The corresponding values for methane are +0.46 (0.36 to 0.56) W m−2 and 4 % per decade but with a clear acceleration since 2007. Ozone radiative-forcing averages +0.32 (0 to 0.64) W m−2, almost entirely contributed by tropospheric ozone since stratospheric ozone radiative forcing is only +0.003 W m−2. Aerosol radiative-forcing averages −1.25 (−1.98 to −0.52) W m−2, with aerosol–radiation interactions contributing −0.56 W m−2 and aerosol–cloud interactions contributing −0.69 W m−2 to the global average. Both have been relatively stable since 2003. Taking the six forcing agents together, there is no indication of a sustained slowdown or acceleration in the rate of increase in anthropogenic radiative forcing over the period. These ongoing radiative-forcing estimates will monitor the impact on the Earth's energy budget of the dramatic emission reductions towards net-zero that are needed to limit surface temperature warming to the Paris Agreement temperature targets. Indeed, such impacts should be clearly manifested in radiative forcing before being clear in the temperature record. In addition, this radiative-forcing dataset can provide the input distributions needed by researchers involved in monitoring of climate change, detection and attribution, interannual to decadal prediction, and integrated assessment modelling. The data generated by this work are available at https://doi.org/10.24380/ads.1hj3y896 (Bellouin et al., 2020b).


2015 ◽  
Vol 15 (15) ◽  
pp. 21025-21061
Author(s):  
E. D. Sofen ◽  
D. Bowdalo ◽  
M. J. Evans

Abstract. Surface ozone observations with modern instrumentation have been made around the world for almost 50 years. Some of these observations have been made as one-off activities with short term, specific science objectives and some have been made as part of wider networks which have provided a foundational infrastructure of data collection, calibration, quality control and dissemination. These observations provide a fundamental underpinning to our understanding of tropospheric chemistry, air quality policy, atmosphere-biosphere interactions, etc. Sofen et al. (2015) brought together 8 of these networks to provide a single dataset of surface ozone observations. We investigate how representative this combined dataset is of global surface ozone using the output from a global atmospheric chemistry model. We estimate that on an area basis, 25 % of the globe is observed (34 % land, 21 % ocean). Whereas Europe and North America have almost complete coverage, other continents such as Africa, South America and Asia (12–17 %) show significant gaps. Antarctica is surprisingly well observed (78 %). Little monitoring occurs over the oceans with the tropical and southern oceans particularly poorly represented. The surface ozone over key biomes such as tropical forests and savanna is almost completely unmonitored. A chemical cluster analysis suggests that a significant number of observations are made of polluted air masses, but cleaner air masses whether over the land or ocean (especially again in the tropics) are significantly under observed. The current network is unlikely to see the impact of ENSO but may be capable of detecting other planetary scale signals. Model assessment and validation activities are hampered by a lack of observations in regions where they models differ substantially, as is the ability to monitor likely changes in surface ozone over the next century. Using our methodology we are able to suggest new sites which would help to close the gap in our ability to measure global surface ozone. An additional 20 surface ozone monitoring sites (a 20 % increase in the WMO GAW ozone sites or a 1 % increase in the total background network) located on 10 islands and in 10 continental regions would almost double the area observed. The cost of this addition to the network is small compared to other expenditure on atmospheric composition research infrastructure and would provide a significant long term benefit to our understanding of the composition of the atmosphere and in the development of policy.


2012 ◽  
Vol 12 (4) ◽  
pp. 1737-1758 ◽  
Author(s):  
D. J. Allen ◽  
K. E. Pickering ◽  
R. W. Pinder ◽  
B. H. Henderson ◽  
K. W. Appel ◽  
...  

Abstract. A lightning-nitrogen oxide (NO) algorithm is implemented in the Community Multiscale Air Quality Model (CMAQ) and used to evaluate the impact of lightning-NO emissions (LNOx) on tropospheric photochemistry over the United States during the summer of 2006. For a 500 mole per flash lightning-NO source, the mean summertime tropospheric NO2 column agrees with satellite-retrieved columns to within −5 to +13%. Temporal fluctuations in the column are moderately well simulated; however, the addition of LNOx does not lead to a better simulation of day-to-day variability. The contribution of lightning-NO to the model column ranges from ∼10% in the northern US to >45% in the south-central and southeastern US. Lightning-NO adds up to 20 ppbv to upper tropospheric model ozone and 1.5–4.5 ppbv to 8-h maximum surface layer ozone, although, on average, the contribution of LNOx to model surface ozone is 1–2 ppbv less on poor air quality days. LNOx increases wet deposition of oxidized nitrogen by 43% and total deposition of nitrogen by 10%. This additional deposition reduces the mean magnitude of the CMAQ low-bias in nitrate wet deposition with respect to National Atmospheric Deposition monitors to near zero. Differences in urban/rural biases between model and satellite-retrieved NO2 columns were examined to identify possible problems in model chemistry and/or transport. CMAQ columns were too large over urban areas. Biases at other locations were minor after accounting for the impacts of lightning-NO emissions and the averaging kernel on model columns. In order to obtain an upper bound on the contribution of uncertainties in NOy chemistry to upper tropospheric NOx low biases, sensitivity calculations with updated chemistry were run for the time period of the Intercontinental Chemical Transport Experiment (INTEX-A) field campaign (summer 2004). After adjusting for possible interferences in NO2 measurements and averaging over the entire campaign, these updates reduced 7–9 km biases from 32 to 17% and 9–12 km biases from 57 to 46%. While these changes lead to better agreement, a considerable unexplained NO2 low-bias remains in the uppermost troposphere.


2019 ◽  
Author(s):  
Laurent Menut ◽  
Paolo Tuccella ◽  
Cyrille Flamant ◽  
Adrien Deroubaix ◽  
Marco Gaetani

Abstract. The aerosol direct and indirect effects are studied over West Africa in the summer of 2016 using the coupled WRF-CHIMERE regional model including aerosol-cloud interaction parametrization. First, a reference simulation is performed and compared with observations acquired during the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) field campaign which took place in June and July 2016. Sensitivity experiments are also designed to gain insights into the impact of the aerosols dominating the atmospheric composition in southern West Africa (one simulation with halved anthropogenic emissions and one with halved mineral dust emissions). The most important effect of aerosol-cloud interactions is found for the mineral dust scenario and it is shown that halving the emissions of mineral dust decreases the 2-m temperature by 0.5 K and the boundary layer height by 25 m in monthly average and over the Saharan region. The presence of dust aerosols also increases (resp. decreases) the shortwave (resp. longwave) radiation at the surface by 25 W/m2. It is also shown that the decrease of anthropogenic emissions along the coast has an impact on the mineral dust load over West Africa by increasing their emissions in Saharan region. It is due to a mechanism where particulate matter concentrations are decreased along the coast, imposing a latitudinal shift of the monsoonal precipitation, and, in turn, an increase of the surface wind speed over arid areas, inducing more mineral dust emissions.


2013 ◽  
Vol 13 (24) ◽  
pp. 12215-12231 ◽  
Author(s):  
Z. S. Stock ◽  
M. R. Russo ◽  
T. M. Butler ◽  
A. T. Archibald ◽  
M. G. Lawrence ◽  
...  

Abstract. We examine the effects of ozone precursor emissions from megacities on present-day air quality using the global chemistry–climate model UM-UKCA (UK Met Office Unified Model coupled to the UK Chemistry and Aerosols model). The sensitivity of megacity and regional ozone to local emissions, both from within the megacity and from surrounding regions, is important for determining air quality across many scales, which in turn is key for reducing human exposure to high levels of pollutants. We use two methods, perturbation and tagging, to quantify the impact of megacity emissions on global ozone. We also completely redistribute the anthropogenic emissions from megacities, to compare changes in local air quality going from centralised, densely populated megacities to decentralised, lower density urban areas. Focus is placed not only on how changes to megacity emissions affect regional and global NOx and O3, but also on changes to NOy deposition and to local chemical environments which are perturbed by the emission changes. The perturbation and tagging methods show broadly similar megacity impacts on total ozone, with the perturbation method underestimating the contribution partially because it perturbs the background chemical environment. The total redistribution of megacity emissions locally shifts the chemical environment towards more NOx-limited conditions in the megacities, which is more conducive to ozone production, and monthly mean surface ozone is found to increase up to 30% in megacities, depending on latitude and season. However, the displacement of emissions has little effect on the global annual ozone burden (0.12% change). Globally, megacity emissions are shown to contribute ~3% of total NOy deposition. The changes in O3, NOx and NOy deposition described here are useful for quantifying megacity impacts and for understanding the sensitivity of megacity regions to local emissions. The small global effects of the 100% redistribution carried out in this study suggest that the distribution of emissions on the local scale is unlikely to have large implications for chemistry–climate processes on the global scale.


2020 ◽  
Vol 237 ◽  
pp. 03012
Author(s):  
Christoph Senff ◽  
Andrew Langford ◽  
Raul Alvarez ◽  
Tim Bonin ◽  
Alan Brewer ◽  
...  

Recently, two air quality campaigns were conducted in the southwestern United States to study the impact of transported ozone, stratospheric intrusions, and fire emissions on ground-level ozone concentrations. The California Baseline Ozone Transport Study (CABOTS) took place in May – August 2016 covering the central California coast and San Joaquin Valley, and the Fires, Asian, and Stratospheric Transport Las Vegas Ozone Study (FAST-LVOS) was conducted in the greater Las Vegas, Nevada area in May – June 2017. During these studies, nearly 1000 hours of ozone and aerosol profile data were collected with the NOAA TOPAZ lidar. A Doppler wind lidar and a radar wind profiler provided continuous observations of atmospheric turbulence, horizontal winds, and mixed layer height. These measurements allowed us to directly observe the degree to which ozone transport layers aloft were entrained into the boundary layer and to quantify the resulting impact on surface ozone levels. Mixed layer heights in the San Joaquin Valley during CABOTS were generally below 1 km above ground level (AGL), while boundary layer heights in Las Vegas during FAST-LVOS routinely exceeded 3 km AGL and occasionally reached up to 4.5 km AGL. Consequently, boundary layer entrainment was more often observed during FAST-LVOS, while most elevated ozone layers passed untapped over the San Joaquin Valley during CABOTS.


2008 ◽  
Vol 8 (5) ◽  
pp. 18323-18384 ◽  
Author(s):  
S. B. Dalsøren ◽  
M. S. Eide ◽  
Ø. Endresen ◽  
A. Mjelde ◽  
G. Gravir ◽  
...  

Abstract. A reliable and up-to-date ship emission inventory is essential for atmospheric scientists quantifying the impact of shipping and for policy makers implementing regulations and incentives for emission reduction. The emission modelling in this study takes into account ship type and size dependent input data for 15 ship types and 7 size categories. Global port arrival and departure data for more than 32 000 merchant ships are used to establish operational profiles for the ship segments. The modelled total fuel consumption amounts to 217 Mt in 2004 of which 11 Mt is consumed in in-port operations. This is in agreement with international sales statistics. The modelled fuel consumption is applied to develop global emission inventories for CO2, NO2, SO2, CO, CH4, VOC (Volatile Organic Compounds), N2O, BC (Black Carbon) and OC (Organic Carbon). The global emissions from ships at sea and in ports are distributed geographically, applying extended geographical data sets covering about 2 million global ship observations and global port data for 32 000 ships. In addition to inventories for the world fleet, inventories are produced separately for the three dominating ship types, using ship type specific emission modelling and traffic distributions. A global Chemical Transport Model (CTM) was used to calculate the environmental impacts of the emissions. We find that ship emissions is a dominant contributor over much of the world oceans to surface concentrations of NO2 and SO2. The contribution is also large over some coastal zones. For surface ozone the contribution is high over the oceans but clearly also of importance over western North America (contribution 15–25%) and western Europe (5–15%). The contribution to tropospheric column ozone is up to 5–6%. The overall impact of ship emissions on global methane lifetime is large due to the high NOx emissions. With regard to acidification we find that ships contribute 11% to nitrate wet deposition and 4.5% to sulphur wet deposition globally. In certain coastal regions the contributions may be in the range 15–50%. In general we find that ship emissions have a large impact on acidic deposition and surface ozone in western North America, Scandinavia, western Europe, western North Africa and Malaysia/Indonesia. For most of these regions container traffic, the largest emitter by ship type, has the largest impact. This is the case especially for the Pacific and the related container trade routes between Asia and North America. However, the contributions from bulk ships and tank vessels are also significant in the above mentioned impact regions. Though the total ship impact at low latitudes is lower, the tank vessels have a quite large contribution at low latitudes and near the Gulf of Mexico and Middle East. The bulk ships are characterized by large impact in Oceania compared to other ship types. In Scandinavia and north-western Europe, one of the major ship impact regions, the three largest ship types have rather small relative contributions. The impact in this region is probably dominated by smaller ships operating closer to the coast. For emissions in ports impacts on NO2 and SO2 seem to be of significance. For most ports the contribution to the two components is in the range 0.5–5%, for a few ports it exceeds 10%. The approach presented provides an improvement in characterizing fleet operational patterns, and thereby ship emissions and impacts. Furthermore, the study shows where emission reductions can be applied to most effectively minimize the impacts by different ship types.


Sign in / Sign up

Export Citation Format

Share Document