scholarly journals Retrieval of subvisual cirrus cloud optical thickness from limb-scatter measurements

2013 ◽  
Vol 6 (1) ◽  
pp. 105-119 ◽  
Author(s):  
J. T. Wiensz ◽  
D. A. Degenstein ◽  
N. D. Lloyd ◽  
A. E. Bourassa

Abstract. We present a technique for estimating the optical thickness of subvisual cirrus clouds detected by OSIRIS (Optical Spectrograph and Infrared Imaging System), a limb-viewing satellite instrument that measures scattered radiances from the UV to the near-IR. The measurement set is composed of a ratio of limb radiance profiles at two wavelengths that indicates the presence of cloud-scattering regions. Cross-sections and phase functions from an in situ database are used to simulate scattering by cloud-particles. With appropriate configurations discussed in this paper, the SASKTRAN successive-orders of scatter radiative transfer model is able to simulate accurately the in-cloud radiances from OSIRIS. Configured in this way, the model is used with a multiplicative algebraic reconstruction technique (MART) to retrieve the cloud extinction profile for an assumed effective cloud particle size. The sensitivity of these retrievals to key auxiliary model parameters is shown, and it is shown that the retrieved extinction profile, for an assumed effective cloud particle size, models well the measured in-cloud radiances from OSIRIS. The greatest sensitivity of the retrieved optical thickness is to the effective cloud particle size. Since OSIRIS has an 11-yr record of subvisual cirrus cloud detections, the work described in this manuscript provides a very useful method for providing a long-term global record of the properties of these clouds.

2012 ◽  
Vol 5 (4) ◽  
pp. 5313-5355
Author(s):  
J. T. Wiensz ◽  
D. A. Degenstein ◽  
N. D. Lloyd ◽  
A. E. Bourassa

Abstract. We present a technique for retrieving the optical properties of subvisual cirrus clouds detected by OSIRIS, a limb-viewing satellite instrument that measures scattered radiances from the UV to the near-IR. The measurement set is composed of a ratio of limb radiance profiles at two wavelengths that indicates the presence of cloud-scattering regions. Optical properties from an in-situ database are used to simulate scattering by cloud-particles. With appropriate configurations discussed in this paper, the SASKTRAN successive-orders of scatter radiative transfer model is able to simulate accurately the in-cloud radiances from OSIRIS. Configured in this way, the model is used with a multiplicative algebraic reconstruction technique (MART) to retrieve the cloud extinction profile for an assumed effective cloud particle size. The sensitivity of these retrievals to key auxiliary model parameters is shown, and it is demonstrated that the retrieved extinction profile models accurately the measured in-cloud radiances from OSIRIS. Since OSIRIS has an 11-yr record of subvisual cirrus cloud detections, the work described in this manuscript provides a very useful method for providing a long-term global record of the properties of these clouds.


2011 ◽  
Vol 50 (11) ◽  
pp. 2283-2297 ◽  
Author(s):  
Chenxi Wang ◽  
Ping Yang ◽  
Bryan A. Baum ◽  
Steven Platnick ◽  
Andrew K. Heidinger ◽  
...  

AbstractA computationally efficient radiative transfer model (RTM) is developed for the inference of ice cloud optical thickness and effective particle size from satellite-based infrared (IR) measurements and is aimed at potential use in operational cloud-property retrievals from multispectral satellite imagery. The RTM employs precomputed lookup tables to simulate the top-of-the-atmosphere (TOA) radiances (or brightness temperatures) at 8.5-, 11-, and 12-μm bands. For the clear-sky atmosphere, the optical thickness of each atmospheric layer resulting from gaseous absorption is derived from the correlated-k-distribution method. The cloud reflectance, transmittance, emissivity, and effective temperature are precomputed using the Discrete Ordinate Radiative Transfer model (DISORT). For an atmosphere containing a semitransparent ice cloud layer with a visible optical thickness τ smaller than 5, the TOA brightness temperature differences (BTDs) between the fast model and the more rigorous DISORT results are less than 0.1 K, whereas the BTDs are less than 0.01 K if τ is larger than 10. With the proposed RTM, the cloud optical and microphysical properties are retrieved from collocated observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) in conjunction with the Modern Era Retrospective-Analysis for Research and Applications (MERRA) data. Comparisons between the retrieved ice cloud properties (optical thickness and effective particle size) based on the present IR fast model and those from the Aqua/MODIS operational collection-5 cloud products indicate that the IR retrievals are smaller. A comparison between the IR-retrieved ice water path (IWP) and CALIOP-retrieved IWP shows robust agreement over most of the IWP range.


2007 ◽  
Vol 85 (11) ◽  
pp. 1225-1243 ◽  
Author(s):  
C Z Roth ◽  
D A Degenstein ◽  
A E Bourassa ◽  
E J Llewellyn

A new algorithm, SaskMART, is presented that uses observations of limb-scattered sunlight and a radiative transfer model to determine the ozone number-density profile up to 35 km altitude. In practice, clouds limit the lower extent of the retrieval to around 15 km but if the troposphere is clear the retrieval can be extended to altitudes as low as 10 km. SaskMART is an iterative Multiplicative Algebraic Reconstruction Technique that generates accurate results and is insensitive to the initial estimate of the ozone profile. Examples are presented using the OSIRIS limb-scattered radiance measurements and good agreement has been found when these results are compared with those derived from SAGE II measurements. PACS Nos.: 33.20.Kf, 33.20.Lg, 42.68.Ca, 42.68.Mj, 92.60.H–, 92.60.hd


2021 ◽  
Author(s):  
Marta Luffarelli ◽  
Yves Govaerts

<p>The CISAR (Combined Inversion of Surface and AeRosols) algorithm is exploited in the framework of the ESA Aerosol Climate Change Initiatiave (CCI) project, aiming at providing a set of atmospheric (cloud and aerosol) and surface reflectance products derived from S3A/SLSTR observations using the same radiative transfer physics and assumptions. CISAR is an advance algorithm developed by Rayference originally designed for the retrieval of aerosol single scattering properties and surface reflectance from both geostationary and polar orbiting satellite observations.  It is based on the inversion of a fast radiative transfer model (FASTRE). The retrieval mechanism allows a continuous variation of the aerosol and cloud single scattering properties in the solution space.</p><p> </p><p>Traditionally, different approaches are exploited to retrieve the different Earth system components, which could lead to inconsistent data sets. The simultaneous retrieval of different atmospheric and surface variables over any type of surface (including bright surfaces and water bodies) with the same forward model and inversion scheme ensures the consistency among the retrieved Earth system components. Additionally, pixels located in the transition zone between pure clouds and pure aerosols are often discarded from both cloud and aerosol algorithms. This “twilight zone” can cover up to 30% of the globe. A consistent retrieval of both cloud and aerosol single scattering properties with the same algorithm could help filling this gap.</p><p> </p><p>The CISAR algorithm aims at overcoming the need of an external cloud mask, discriminating internally between aerosol and cloud properties. This approach helps reducing the overestimation of aerosol optical thickness in cloud contaminated pixels. The surface reflectance product is delivered both for cloud-free and cloudy observations.  </p><p> </p><p>Global maps obtained from the processing of S3A/SLSTR observations will be shown. The SLSTR/CISAR products over events such as, for instance, the Australian fire in the last months of 2019, will be discussed in terms of aerosol optical thickness, aerosol-cloud discrimination and fine/coarse mode fraction.</p>


Author(s):  
H. Lin ◽  
X. Zhang ◽  
Y. Yang ◽  
X. Wu ◽  
D. Guo

From geologic perspective, understanding the types, abundance, and size distributions of minerals allows us to address what geologic processes have been active on the lunar and planetary surface. The imaging spectrometer which was carried by the Yutu Rover of Chinese Chang’E-3 mission collected the reflectance at four different sites at the height of ~ 1 m, providing a new insight to understand the lunar surface. The mineral composition and Particle Size Distribution (PSD) of these four sites were derived in this study using a Radiative Transfer Model (RTM) and Sparse Unmixing (SU) algorithm. The endmembers used were clinopyroxene, orthopyroxene, olivine, plagioclase and agglutinate collected from the lunar sample spectral dataset in RELAB. The results show that the agglutinate, clinopyroxene and olivine are the dominant minerals around the landing site. In location Node E, the abundance of agglutinate can reach up to 70 %, and the abundances of clinopyroxene and olivine are around 10 %. The mean particle sizes and the deviations of these endmembers were retrieved. PSDs of all these endmembers are close to normal distribution, and differences exist in the mean particle sizes, indicating the difference of space weathering rate of these endmembers.


2015 ◽  
Vol 8 (7) ◽  
pp. 2759-2774 ◽  
Author(s):  
A. Garnier ◽  
J. Pelon ◽  
M. A. Vaughan ◽  
D. M. Winker ◽  
C. R. Trepte ◽  
...  

Abstract. Cirrus cloud absorption optical depths retrieved at 12.05 μm are compared to extinction optical depths retrieved at 0.532 μm from perfectly co-located observations of single-layered semi-transparent cirrus over ocean made by the Imaging Infrared Radiometer (IIR) and the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP) flying on board the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite. IIR infrared absorption optical depths are compared to CALIOP visible extinction optical depths when the latter can be directly derived from the measured apparent two-way transmittance through the cloud. An evaluation of the CALIOP multiple scattering factor is inferred from these comparisons after assessing and correcting biases in IIR and CALIOP optical depths reported in version 3 data products. In particular, the blackbody radiance taken in the IIR version 3 algorithm is evaluated, and IIR retrievals are corrected accordingly. Numerical simulations and IIR retrievals of ice crystal sizes suggest that the ratios of CALIOP extinction and IIR absorption optical depths should remain roughly constant with respect to temperature. Instead, these ratios are found to increase quasi-linearly by about 40 % as the temperature at the layer centroid altitude decreases from 240 to 200 K. It is discussed that this behavior can be explained by variations of the multiple scattering factor ηT applied to correct the measured apparent two-way transmittance for contribution of forward-scattering. While the CALIOP version 3 retrievals hold ηT fixed at 0.6, this study shows that ηT varies with temperature (and hence cloud particle size) from ηT = 0.8 at 200 K to ηT = 0.5 at 240 K for single-layered semi-transparent cirrus clouds with optical depth larger than 0.3. The revised parameterization of ηT introduces a concomitant temperature dependence in the simultaneously derived CALIOP lidar ratios that is consistent with observed changes in CALIOP depolarization ratios and particle habits derived from IIR measurements.


2014 ◽  
Vol 18 (2) ◽  
pp. 5-9 ◽  
Author(s):  
Anna M. Jarocińska

Abstract Natural vegetation is complex and its reflectance is not easy to model. The aim of this study was to adjust the Radiative Transfer Model parameters for modelling the reflectance of heterogeneous meadows and evaluate its accuracy dependent on the vegetation characteristics. PROSAIL input parameters and reference spectra were collected during field measurements. Two different datasets were created: in the first, the input parameters were modelled using only field measurements; in the second, three input parameters were adjusted to minimize the differences between modelled and measured spectra. Reflectance was modelled using two datasets and then verified based on field reflectance using the RMSE. The average RMSE for the first dataset was equal to 0.1058, the second was 0.0362. The accuracy of the simulated spectra was analysed dependent on the value of the biophysical parameters. Better results were obtained for meadows with higher biomass value, greater LAI and lower water content.


2013 ◽  
Vol 70 (1) ◽  
pp. 317-329 ◽  
Author(s):  
M. Sikand ◽  
J. Koskulics ◽  
K. Stamnes ◽  
B. Hamre ◽  
J. J. Stamnes ◽  
...  

Abstract Microphysical and radiative measurements in boundary layer mixed-phase clouds (MPCs), consisting of ice crystals and liquid droplets, have been analyzed. These cloud measurements were collected during a May–June 2008 tethered-balloon campaign in Ny-Ålesund, Norway, located at 78.9°N, 11.9°E in the High Arctic. The instruments deployed on the tethered-balloon platform included a radiometer, a cloud particle imager (CPI), and a meteorological package. To analyze the data, a radiative transfer model (RTM) was constructed with two cloud layers—consistent with the CPI data—embedded in a background Rayleigh scattering atmosphere. The mean intensities estimated from the radiometer measurements on the balloon were used in conjunction with the RTM to quantify the vertical structure of the MPC system, while the downward irradiances measured by an upward-looking ground-based radiometer were used to constrain the total cloud optical depth. The time series of radiometer and CPI data obtained while profiling the cloud system was used to estimate the time evolution of the liquid water and ice particle optical depths as well as the vertical location of the two cloud layers.


2019 ◽  
Vol 489 (4) ◽  
pp. 4690-4704 ◽  
Author(s):  
Jong-Ho Shinn

ABSTRACT We have revisited the target EON_10.477_41.954 in order to determine more accurately the uncertainties in the model parameters that are important for target classification (i.e. galaxies with or without substantial extraplanar dust). We performed a Markov chain Monte Carlo (MCMC) analysis for the 15 parameters of the three-dimensional radiative-transfer galaxy model we used previously for target classification. To investigate the convergence of the MCMC sampling – which is usually neglected in the literature but should not be – we monitored the integrated autocorrelation time (τint), and we achieved effective sample sizes >5650 for all the model parameters. The confidence intervals are unstable at the beginning of the iterations where the values of τint are increasing, but they become stable in later iterations where those values are almost constant. The final confidence intervals are ∼5–100 times larger than the nominal uncertainties used in our previous study (the standard deviation of three best-fitting results). Thus, those nominal uncertainties are not good proxies for the model-parameter uncertainties. Although the position of EON_10.477_41.954 in the target-classification plot (the scale height to diameter ratio of dust versus that of light source) decreases by about 20–30 per cent when compared to our previous study, its membership in the ‘high-group’ – i.e. among galaxies with substantial extraplanar dust – nevertheless remains unchanged.


2009 ◽  
Vol 2 (2) ◽  
pp. 653-678 ◽  
Author(s):  
T. Sonkaew ◽  
V. V. Rozanov ◽  
C. von Savigny ◽  
A. Rozanov ◽  
H. Bovensmann ◽  
...  

Abstract. Clouds in the atmosphere play an important role in reflection, absorption and transmission of solar radiation and thus affect trace gas retrievals. The main goal of this paper is to examine the sensitivity of stratospheric and lower mesospheric ozone retrievals from limb-scattered radiance measurements to clouds using the SCIATRAN radiative transfer model and retrieval package. The retrieval approach employed is optimal estimation, and the considered clouds are vertically and horizontally homogeneous. Assuming an aerosol-free atmosphere and Mie phase functions for cloud particles, we compute the relative error of ozone profile retrievals in a cloudy atmosphere if clouds are neglected in the retrieval. To access altitudes from the lower stratosphere up to the lower mesosphere, we combine the retrievals in the Chappuis and Hartley ozone absorption bands. We find significant cloud sensitivity of the limb ozone retrievals in the Chappuis bands at lower stratospheric altitudes. The relative error in the retrieved ozone concentrations gradually decreases with increasing altitude and becomes negligible above approximately 40 km. The parameters with the largest impact on the ozone retrievals are cloud optical thickness, ground albedo and solar zenith angle. Clouds with different geometrical thicknesses or different cloud altitudes have a similar impact on the ozone retrievals for a given cloud optical thickness value, if the clouds are outside the field of view of the instrument. The effective radius of water droplets has a small influence on the error, i.e., less than 0.5% at altitudes above the cloud top height. Furthermore, the impact of clouds on the ozone profile retrievals was found to have a rather small dependence on the solar azimuth angle (less than 1% for all possible azimuth angles). For the most frequent cloud types, the total error is below 6% above 15 km altitude, if clouds are completely neglected in the retrieval. Neglecting clouds in the ozone profile retrievals generally leads to a low bias for a low ground albedo and to a high bias for a high ground albedo, assuming that the ground albedo is well known.


Sign in / Sign up

Export Citation Format

Share Document