scholarly journals The imprint of surface fluxes and transport on variations in total column carbon dioxide

2011 ◽  
Vol 8 (4) ◽  
pp. 7475-7524 ◽  
Author(s):  
G. Keppel-Aleks ◽  
P. O. Wennberg ◽  
R. A. Washenfelder ◽  
D. Wunch ◽  
T. Schneider ◽  
...  

Abstract. New observations of the vertically integrated CO2 mixing ratio, ⟨CO2⟩, from ground-based remote sensing show that variations in ⟨CO2⟩ are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large scale and local fluxes. Observations of both ⟨CO2⟩ and CO2 concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in ⟨CO2⟩ in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO2, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in ⟨CO2⟩ from covariations in ⟨CO2⟩ and potential temperature, θ, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the ⟨CO2⟩ seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes as well as the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better reflect the observations. Our simulations suggest that boreal growing season NEE (between 45–65° N) is underestimated by ~40 % in CASA. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.

2012 ◽  
Vol 9 (3) ◽  
pp. 875-891 ◽  
Author(s):  
G. Keppel-Aleks ◽  
P. O. Wennberg ◽  
R. A. Washenfelder ◽  
D. Wunch ◽  
T. Schneider ◽  
...  

Abstract. New observations of the vertically integrated CO2 mixing ratio, ⟨CO2⟩, from ground-based remote sensing show that variations in CO2⟩ are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large-scale and local fluxes. Observations of both ⟨CO2⟩ and CO2 concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in ⟨CO2⟩ in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO2, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in ⟨CO2⟩ from covariations in ⟨CO2⟩ and potential temperature, θ, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that simulations using Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the ⟨CO2⟩ seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes and the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better fit the observations. Our simulations suggest that climatological mean CASA fluxes underestimate boreal growing season NEE (between 45–65° N) by ~40%. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.


2010 ◽  
Vol 10 (12) ◽  
pp. 30569-30611 ◽  
Author(s):  
G. Keppel-Aleks ◽  
P. O. Wennberg ◽  
T. Schneider

Abstract. Observations of gradients in the total CO2 column, ‹CO2› are expected to provide improved constraints on surface fluxes of CO2. Here we use a general circulation model with a variety of prescribed carbon fluxes to investigate how variations in ‹CO2› arise. On diurnal scales, variations are small and are forced by both local fluxes and advection. On seasonal scales, gradients are set by the north-south flux distribution. On synoptic scales, variations arise due to large-scale eddy-driven disturbances of the meridional gradient. In this case, because variations in ‹CO2› are tied to synoptic activity, significant correlations exist between ‹CO2› and dynamical tracers. We illustrate how such correlations can be used to describe the north-south gradients of ‹CO2› and the underlying fluxes on continental scales. These simulations suggest a novel analysis framework for using column observations in carbon cycle science.


2014 ◽  
Vol 14 (2) ◽  
pp. 2307-2362 ◽  
Author(s):  
R. L. Thompson ◽  
P. K. Patra ◽  
K. Ishijima ◽  
E. Saikawa ◽  
M. Corazza ◽  
...  

Abstract. We present a comparison of chemistry-transport models (TransCom-N2O) to examine the importance of atmospheric transport and surface fluxes on the variability of N2O mixing ratios in the troposphere. Six different models and two model variants participated in the inter-comparison and simulations were made for the period 2006 to 2009. In addition to N2O, simulations of CFC-12 and SF6 were made by a subset of four of the models to provide information on the models proficiency in stratosphere-troposphere exchange (STE) and meridional transport, respectively. The same prior emissions were used by all models to restrict differences among models to transport and chemistry alone. Four different N2O flux scenarios totalling between 14 and 17 Tg N yr−1 (for 2005) globally were also compared. The modelled N2O mixing ratios were assessed against observations from in-situ stations, discrete air sampling networks, and aircraft. All models adequately captured the large-scale patterns of N2O and the vertical gradient from the troposphere to the stratosphere and most models also adequately captured the N2O tropospheric growth rate. However, all models underestimated the inter-hemispheric N2O gradient by at least 0.33 ppb (equivalent to 1.5 Tg N), which, even after accounting for an overestimate of emissions in the Southern Ocean of circa 1.0 Tg N, points to a likely underestimate of the Northern Hemisphere source by up to 0.5 Tg N and/or an overestimate of STE in the Northern Hemisphere. Comparison with aircraft data reveal that the models overestimate the amplitude of the N2O seasonal cycle at Hawaii (21° N, 158° W) below circa 6000 m, suggesting an overestimate of the importance of stratosphere to troposphere transport in the lower troposphere at this latitude. In the Northern Hemisphere, most of the models that provided CFC-12 simulations captured the phase of the CFC-12, seasonal cycle, indicating a reasonable representation of the timing of STE. However, for N2O all models simulated a too early minimum by 2 to 3 months owing to errors in the seasonal cycle in the prior soil emissions, which is still not adequately represented by terrestrial biosphere models. In the Southern Hemisphere, most models failed to capture the N2O and CFC-12 seasonality at Cape Grim, Tasmania, and all failed at the South Pole, whereas for SF6, all models could capture the seasonality at all sites, suggesting that there are large errors in modeled vertical transport in high southern latitudes.


2017 ◽  
Vol 2017 ◽  
pp. 1-26
Author(s):  
Stephany M. Taylor ◽  
Michael L. Kaplan ◽  
Yuh-Lang Lin

This study investigates the synoptic/mesoscale dynamics responsible for an unusually heavy southern US snowstorm that occurred on February 11-12, 2010, using reanalysis, observations, and numerical simulations. This record breaking snowfall event represents an example of multiple upper level and low-level jets (LLJs) and their accompanying baroclinic zones. The analysis reveals the following synoptic scale processes as significant contributors: (1) upper level jet splitting and merging, (2) advection of cold arctic air at low levels by a large anticyclone, and (3) an incoming upper level shortwave trough. In addition to the synoptic scale processes, the following mesoscale features played a major role in this snowstorm event: coexisting potential (convective) instability and conditional symmetric instability, terrain blocking, and a double LLJ development process. Sensitivity experiments including (1) limiting the orographic effects of elevated plateau in Texas and the Sierra Madre Mountains in Mexico by reducing the terrain height to 225 meters, (2) the microphysics/latent heating effects, and (3) surface fluxes on the development and intensity of the snowstorm were also conducted by turning these options off in the numerical model. Of all three experiments, the surface flux experiment displays the least amount of influence on the developing frozen precipitation bands.


2014 ◽  
Vol 14 (24) ◽  
pp. 13739-13753 ◽  
Author(s):  
M. Reuter ◽  
M. Buchwitz ◽  
M. Hilker ◽  
J. Heymann ◽  
O. Schneising ◽  
...  

Abstract. Current knowledge about the European terrestrial biospheric carbon sink, from the Atlantic to the Urals, relies upon bottom-up inventory and surface flux inverse model estimates (e.g. 0.27±0.16 GtC a−1 for 2000–2005 (Schulze et al., 2009), 0.17±0.44 GtC a−1 for 2001–2007 (Peters et al., 2010), 0.45±0.40 GtC a−1 for 2010 (Chevallier et al., 2014), 0.40±0.42 GtC a−1 for 2001–2004 (Peylin et al., 2013)). Inverse models assimilate in situ CO2 atmospheric concentrations measured by surface-based air sampling networks. The intrinsic sparseness of these networks is one reason for the relatively large flux uncertainties (Peters et al., 2010; Bruhwiler et al., 2011). Satellite-based CO2 measurements have the potential to reduce these uncertainties (Miller et al., 2007; Chevallier et al., 2007). Global inversion experiments using independent models and independent GOSAT satellite data products consistently derived a considerably larger European sink (1.0–1.3 GtC a−1 for 09/2009–08/2010 (Basu et al., 2013), 1.2–1.8 GtC a−1 in 2010 (Chevallier et al., 2014)). However, these results have been considered unrealistic due to potential retrieval biases and/or transport errors (Chevallier et al., 2014) or have not been discussed at all (Basu et al., 2013; Takagi et al., 2014). Our analysis comprises a regional inversion approach using STILT (Gerbig et al., 2003; Lin et al., 2003) short-range (days) particle dispersion modelling, rendering it insensitive to large-scale retrieval biases and less sensitive to long-range transport errors. We show that the satellite-derived European terrestrial carbon sink is indeed much larger (1.02±0.30 GtC a−1 in 2010) than previously expected. This is qualitatively consistent among an ensemble of five different inversion set-ups and five independent satellite retrievals (BESD (Reuter et al., 2011) 2003–2010, ACOS (O’Dell et al., 2012) 2010, UoL-FP (Cogan et al., 2012) 2010, RemoTeC (Butz et al., 2011) 2010, and NIES (Yoshida et al., 2013) 2010) using data from two different instruments (SCIAMACHY (Bovensmann et al., 1999) and GOSAT (Kuze et al., 2009)). The difference to in situ based inversions (Peylin et al., 2013), whilst large with respect to the mean reported European carbon sink (0.4 GtC a−1 for 2001–2004), is similar in magnitude to the reported uncertainty (0.42 GtC a−1). The highest gain in information is obtained during the growing season when satellite observation conditions are advantageous, a priori uncertainties are largest, and the surface sink maximises; during the dormant season, the results are dominated by the a priori. Our results provide evidence that the current understanding of the European carbon sink has to be revisited.


2011 ◽  
Vol 11 (8) ◽  
pp. 3581-3593 ◽  
Author(s):  
G. Keppel-Aleks ◽  
P. O. Wennberg ◽  
T. Schneider

Abstract. Observations of gradients in the total CO2 column, 〈CO2〉, are expected to provide improved constraints on surface fluxes of CO2. Here we use a general circulation model with a variety of prescribed carbon fluxes to investigate how variations in 〈CO2〉 arise. On diurnal scales, variations are small and are forced by both local fluxes and advection. On seasonal scales, gradients are set by the north-south flux distribution. On synoptic scales, variations arise due to large-scale eddy-driven disturbances of the meridional gradient. In this case, because variations in 〈CO2〉 are tied to synoptic activity, significant correlations exist between 〈CO2〉 and dynamical tracers. We illustrate how such correlations can be used to describe the north-south gradients of 〈CO2〉 and the underlying fluxes on continental scales. These simulations suggest a novel analysis framework for using column observations in carbon cycle science.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Alexandria Grimes ◽  
Andrew E. Mercer

Forecasting rapid intensification (hereafter referred to as RI) of tropical cyclones in the Atlantic Basin is still a challenge due to a limited understanding of the meteorological processes that are necessary for predicting RI. To address this challenge, this study considered large-scale processes as RI indicators within tropical cyclone environments. The large-scale processes were identified by formulating composite map types of RI and non-RI storms using NASA MERRA data from 1979 to 2009. The composite fields were formulated by a blended RPCA and cluster analysis approach, yielding multiple map types of RI’s and non-RI’s. Additionally, statistical differences in the large-scale processes were identified by formulating permutation tests, based on the composite output, revealing variables that were statistically significantly distinct between RI and non-RI storms. These variables were used as input in two prediction schemes: logistic regression and support vector machine classification. Ultimately, the approach identified midlevel vorticity, pressure vertical velocity, 200–850 hPa vertical shear, low-level potential temperature, and specific humidity as the most significant in diagnosing RI, yielding modest skill in identifying RI storms.


The success of coupled models of the ocean-atmosphere system depends in part on their ability to estimate the momentum, heat and water vapour fluxes at the interface accurately. Their accuracy as now calculated by atmospheric numerical forecast models with relevant variables at the sea surface given is uncertain. The achievement of an acceptable accuracy in this simpler situation is an essential preliminary to a solution of the more difficult interactive problem. The ISCU/WMO Joint Scientific Committee (JSC) for the World Climate Research Programme (WCRP) considered how best to obtain surface flux values primarily for running large-scale ocean models. They concluded that the most promising approach was to extract them from numerical prediction models whose capabilities in terms of assimilating observations of many diverse kinds and of quality controlling meteorological information, have reached a high level of development and are being improved continuously. The committee requested its Working Group on Numerical Experimentation (WGNE) to investigate and report on the accuracies now achieved. In the absence of measurements of surface fluxes suitable for validation, the WGNE decided that the first step was to compare surface fluxes as estimated by state-of-theart global prediction models. The ECMWF (European Centre for Medium-Range Weather Forecasts) and Meteorological Office models were considered suitable, and have the advantage of employing different approaches to data assimilation, model configuration and the parametrization of physical processes. This report will outline the results obtained by the two models for a first comparison period, May-June 1987.


2014 ◽  
Vol 14 (15) ◽  
pp. 21829-21863 ◽  
Author(s):  
M. Reuter ◽  
M. Buchwitz ◽  
M. Hilker ◽  
J. Heymann ◽  
O. Schneising ◽  
...  

Abstract. Current knowledge about the European terrestrial biospheric carbon sink, from the Atlantic to the Urals, relies upon bottom-up inventory and surface flux inverse model estimates (e.g., 0.27 ± 0.16 Gt C a−1 for 2000–2005 5 (Schulze et al., 2009), 0.17 ± 0.44 Gt C a−1 for 2001–2007 (Peters et al., 2010), 0.45 ± 0.40 Gt C a−1 for 2010 (Chevallier et al., 2014), 0.40 ± 0.42 Gt C a−1 for 2001–2004 (Peylin et al., 2013). Inverse models assimilate in situ CO2 atmospheric concentrations measured by surface-based air sampling networks. The intrinsic sparseness of these networks is one reason for the relatively large flux uncertainties (Peters et al., 2010; Bruhwiler et al., 2011). Satellite-based CO2 measurements have the potential to reduce these uncertainties (Miller et al., 2007; Chevallier et al., 2007). Global inversion experiments using independent models and independent GOSAT satellite data products consistently derived a considerably larger European sink (0.9–1.2 Gt C a−1 for September 2009–August 2010 (Basu et al., 2013), 1.2–1.8 Gt C a−1 in 2010, Chevallier et al., 2014). However, these results have been considered unrealistic due to potential large scale retrieval biases and/or long-range transport errors (Chevallier et al., 2014) or have not been discussed at all (Basu et al., 2013; Takagi et al., 2014). Here we show that the satellite-derived European terrestrial carbon sink is indeed much larger (1.02 ± 0.30 Gt C a−1 in 2010) than previously expected. Our analysis comprises a regional inversion approach using STILT (Gerbig et al., 2003; Lin et al., 2003) short range (days) particle dispersion modelling, rendering it insensitive to large scale retrieval biases and less sensitive to long-range transport errors. The highest gain in information is obtained during the growing season when satellite observation conditions are advantageous and a priori uncertainties are largest. The consistency among an ensemble of five different inversion set-ups and five independent satellite retrievals (BESD (Reuter et al., 2011) 2003–2010, ACOS (O’Dell et al., 2012) 2010, UoL-FP (Cogan et al., 2012) 2010, RemoTeC C (Butz et al., 2011) 2010, and NIES (Yoshida et al., 2013) 2010) using data from two different instruments (SCIAMACHY, Bovensmann et al., 1999 and GOSAT, Kuze et al., 2009) provides evidence that our current understanding of the European carbon sink has to be revisited.


2012 ◽  
Vol 69 (9) ◽  
pp. 2699-2716 ◽  
Author(s):  
Michiya Hayashi ◽  
Hisanori Itoh

Abstract In meteorological dynamics, the shallow-atmosphere approximation is generally used in the momentum equation, together with the “traditional approximation.” In the traditional approximation, two cosine Coriolis terms [hereafter called nontraditional Coriolis terms (NCTs)] and some metric terms are omitted. However, some studies have suggested that the omission of the NCTs may not be appropriate for conditions near the equator. Therefore, this paper investigates the effect of the NCTs on large-scale motions forced by local positive-only heating mimicking cumulus convection. The authors use the linearized quasihydrostatic equation system on an equatorial β plane. Prescribed heating is assumed to move eastward with the slow phase speed of an intraseasonal period. Results of scale analysis and numerical calculations show that differences with and without the NCTs (hereafter, contributions) exhibit the following four features. (i) Whereas contributions to horizontal divergence and vertical velocity are small, the NCTs have large effects on horizontal velocity (vertical vorticity) and perturbations of pressure, potential temperature, and density. (ii) Contributions to horizontal velocity and pressure perturbation have equivalent barotropic structure. (iii) Contributions show east–west asymmetric patterns, with large contributions appearing at the western side of the forcing. (iv) Contributions to vertical vorticity and pressure perturbation are extremely large when the meridional gradient of heating is large. These features can be comprehensively explained by the tilting of the meridional component of the planetary vorticity, which is caused by the meridional gradient of heating.


Sign in / Sign up

Export Citation Format

Share Document