pressure potential
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 32)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Vol 34 (4) ◽  
pp. 591-595
Author(s):  
Wei Fan

Because charge, current, resistance, and voltage are understood based on the perspective of electricity, they can describe various electrical phenomena well, but they cannot explain their origins. Therefore, this article attempts to propose a new understanding of these phenomena from the perspective of mechanics to obtain a feasible way of explaining their origin and to solve problems that cannot be explained from the perspective of electricity. Specifically, this paper attempts to explain the origin of electric charge to obtain a new understanding of the origin of current and to obtain a new understanding of voltage and resistance by explaining the origin of current. Finally, from the perspective of mechanics, the origin of charge can be understood as a manifestation of electron momentum, the origin of current can be understood as a momentum flow, the origin of resistance can be understood as a momentum resistance, and the origin of voltage can be understood as a potential pressure (potential difference) of electron orbital potential. This new understanding of the origin of current from a mechanical perspective can provide a new theoretical explanation for high-temperature superconductivity.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7226
Author(s):  
Maciej Trejda ◽  
Ada Kaszuba ◽  
Ardian Nurwita ◽  
Maria Ziolek

In this paper, the optimization of the synthesis of catalysts based on acidic mesoporous silica of the SBA-15 type by post-synthesis immobilization of 3-(trihydroxysilyl)-1-propanesulfonic acid (TPS) under increased pressure up to 20 bar is reported. Sample structures and composition were examined by XRD measurement, low-temperature N2 adsorption/desorption and elemental analysis. The catalytic activities of the materials obtained were determined in both gas and liquid phase processes, i.e., by esterification of acetic acid and glycerol dehydration, respectively. The optimum pressure for modification leading to the highest number of acidic sites was found to be 10 bar. The final material was very active and stable in liquid phase processes; however, the stability in the gas-phase process was unsatisfactory due to the loss of sulphonic species from the catalyst surface.


2021 ◽  
Vol 118 (46) ◽  
pp. e2110470118
Author(s):  
Pin-Wen Guan ◽  
Russell J. Hemley ◽  
Venkatasubramanian Viswanathan

Recently, superhydrides have been computationally identified and subsequently synthesized with a variety of metals at very high pressures. In this work, we evaluate the possibility of synthesizing superhydrides by uniquely combining electrochemistry and applied pressure. We perform computational searches using density functional theory and particle swarm optimization calculations over a broad range of pressures and electrode potentials. Using a thermodynamic analysis, we construct pressure–potential phase diagrams and provide an alternate synthesis concept, pressure–potential (P2), to access phases having high hydrogen content. Palladium–hydrogen is a widely studied material system with the highest hydride phase being Pd3H4. Most strikingly for this system, at potentials above hydrogen evolution and ∼ 300 MPa pressure, we find the possibility to make palladium superhydrides (e.g., PdH10). We predict the generalizability of this approach for La-H, Y-H, and Mg-H with 10- to 100-fold reduction in required pressure for stabilizing phases. In addition, the P2 strategy allows stabilizing additional phases that cannot be done purely by either pressure or potential and is a general approach that is likely to work for synthesizing other hydrides at modest pressures.


2021 ◽  
Vol 11 (20) ◽  
pp. 9386
Author(s):  
Qijun Xu ◽  
Jinfeng Wang ◽  
Jing Xie

In view of the extensive application of swirl flow pipes (vortex tubes) in refrigeration systems, the parameters of swirl flow pipes were investigated to provide optimal cooling and heating conditions. Three-dimensional numerical simulations were carried out using available experimental data and models. The analysis verified that the heat pipe with a length of 175 mm performed better than the swirl flow pipe with a length of 125 mm, confirming experiments by Agrawal. Meanwhile, by comparing different pressures, it was found that in the single-nozzle swirl flow pipe, the greater the increase of pressure (0.1–1.0 MPa), the greater the burden on the vortex chamber and the more serious the wear is, which can be seen in the higher inlet pressure. In order to improve the durability of the swirl flow pipe, we suggest using a swirl flow pipe with more nozzles. Finally, according to the simulation results, with the rise of carbon dioxide pressure potential energy at the inlet, the cooling effect of the swirl flow is first increasing and then decreasing. When the swirl flow pipe is used as a refrigeration device to determine the minimum cooling temperature under the maximum pressure, the lowest temperature of the 125 mm swirl flow pipe was 252.4 K at 0.8 MPa, while the lowest temperature of the 175 mm swirl flow pipe was 246.0 K. Secondly, the distance from the inlet to the hot outlet of the swirl flow pipe had little effect on the cooling temperature and radial velocity, but increasing its distance increased the wall temperature of the swirl flow pipe because it increases the contact time between the airflow and the hot end of the tube wall. When the swirl flow pipe is used as a heat-producing device, increasing the tube length of the swirl flow pipe appropriately increases its maximum heat-producing temperature.


2021 ◽  
Author(s):  
Tim Wittmann ◽  
Sebastian Lück ◽  
Tim Hertwig ◽  
Christoph Bode ◽  
Jens Friedrichs

Abstract Exhaust gas of an automotive fuel cell is enriched with water vapour and has a pressure potential which can be utilized by a turbine. The gas expansion in the turbine leads to droplet nucleation and condensation. This results in a release of latent heat and a decrease of the gaseous mass flow which has a considerable influence on the turbine performance. This study aims to numerically investigate the influence of these phenomena on the performance map of the radial turbine of an automotive fuel cell turbocharger. For this purpose, the classical nucleation theory and Young’s droplet growth law are integrated into an Euler-Lagrange approach. The results show an almost linear relation between the pressure ratio and the condensation while the specific aerodynamics of an operating point has only a minor influence. At 80 % relative humidity of the inflow, the investigated turbine showed condensation above a total-to-static pressure ratio of 1.8. Condensation leads to thermal throttling of the turbine and to a temperature increase of the rotor outflow of up to 50 K. Increasing humidity of the inflow increases the power output, but condensation losses reduce the efficiency.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1603
Author(s):  
Amadeusz Walczak ◽  
Agnieszka Szypłowska ◽  
Grzegorz Janik ◽  
Grzegorz Pęczkowski

The study was aimed at the determination of the dynamics of spatial distribution of moisture front, caused by pointwise application of water under conditions of high pressure. This was effected through a series of simulations of water injection to a porous material with particle size distribution corresponding to that of sand. The study was composed of six independent experimental series in which the sand monolith was supplied with water doses of 250, 500, 750, 1000, 1250, and 1500 cm3 under pressure (4 bar). At the same time, measurements of volumetric moisture were conducted with the use of TDR sensors, which were positioned within the soil in a regular grid pattern. It was demonstrated that the primary cause of water movement at the moment of injection is the pressure potential gradient of water molecules. The spatial reach of moisture change in relation to the injected water dose was also defined. It was also observed that in the course of water injection there is a risk of disturbing the structure of the porous material. The correctness of the adopted method was verified through the calculation of the water balance.


2021 ◽  
Vol 2 (2) ◽  
pp. 40-50
Author(s):  
Erika Marinda Mufida ◽  
◽  
Sri Wahyu Suciyati ◽  
Gurum Ahmad Pauzi ◽  
Amir Supriyanto

Hydrogen adsorption has been simulated on carbon nanotubes for optimum hydrogen absorption. Parameters that affect the amount of hydrogen absorbed have been studied, such as the effect of chirality and temperature on hydrogen absorption in CNTs. The simulation method of hydrogen adsorption on carbone nanotubes uses molecular dynamics simulation code LAMMPS, applies Lennard-Jones interatomic potential and hydrogen atom movement using Van Der Waals force with Microcanonical Ensemble. Data analysis is the output of LAMPS in the form of data in XYZ format. The data contains information in the form of integration steps, number of atoms, temperature, pressure, potential energy, kinetic energy, volume, van der Waals energy, total simulation time and hydrogen absorption. The simulation results show that the optimum absorption occurs at run 10000 and a temperature of 100 K, for armchair chirality of 10 atoms, chirality of 12 atoms and zigzag chrality of 5 atoms. Formation of hydrogen coordinates with Avogadro software, formation of CNT coordinates with VMD software and visualization of hydrogen adsorption on CNTs using VMD software.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xingyun Jia ◽  
Huaiyu Dong ◽  
Yuzhou Ming ◽  
Yue Wu ◽  
Lidong He

Abstract The Reynolds-averaged Navier–Stokes (RANS) solver was used to calculate, using a test rig to verify the accuracy. The interaction mechanism between different sealed cooling air and gas ingestion at the rotor-stator cavity and chute rim clearance has been investigated. Several groups of representative sealed cooling air flow were selected to explore the cooling efficiency, flow characteristics, tangential and radial velocity ratios in the cavity and the pressure potential field characteristics of trailing edge. The conclusions are obtained: the sealed cooling air flow rate has a significant marginal effect on the sealing effect. The gas ingestion behavior under the small sealed cooling air flow belongs to the disc cavity intrusion, and the intrusion and outflow regions at the of rim clearance are obviously divided into the intrusion characteristic section and the outflow characteristic section. The ingestion behavior under large sealed cooling air flow belongs to clearance ingestion, and the intrusion flow is limited to the chute rim clearance position, which cannot be further penetrated into the cavity. At this time, the clearance area and the cavity area become independent, and the gas ingestion characteristics depend more on the internal flow of the clearance and the vortex structure formed.


2021 ◽  
Author(s):  
Tereche Getnet ◽  
Aschale Getnet

Abstract In this paper, the transient thermal simulation on working fluid of solar updraft power plant using waste water was investigated to characterize the enhancement by numerical and theoretical method. Numerical solution technique used to solve a differential equation form of governing equations using finite difference discretization scheme. Most of the researches done on geometrical parameters to perform the mathematical modeling. This paper combines some of the above improvements on the performance of plant and combines them with new idea of heat source as waste heat in Aluto Langano geothermal power plant. Moreover, this study using dimensions of plant constructed in Manzanares, Spain height of chimney = 194.6 m, diameter of collector = 244 m, diameter of chimney = 10.16 m. The obtained result, the collector temperature increases by 7°C, the pressure potential is found 182.82 Pa, the pressure drop on the turbine was 121.88 Pa, the pressure loss was 60.94 Pa and the power output 123.59 kW. As a result, the collector efficiency increases to 43.58% and the overall efficiency of plant to 0.242%. Key: solar chimney, collector efficiency, thermal simulation


Sign in / Sign up

Export Citation Format

Share Document