Cosmogenic-nuclide burial ages for Quaternary drilling core sediments in the Yangtze River De, China

Author(s):  
Xiao Qi

<p>The establishment of Quaternary drilling core time rulers is an important basis for analyzing the evolution of the Quaternary environment in the plain areas.After analyzing the lithology, color, material composition, sedimentary structure and interface of the Quaternary sediments with a total thickness of 95.5m in YBK1 core in the east side of Yunhe Bridge in Shiqiao Town, Yangzhou City,dividing the stratum in detail,and using dating methods like AMS<sup>14</sup>C,OSL,cosmogenic nuclide and paleomagnetism. Based on four AMS<sup>14</sup>C, ten OSL and two <sup>26</sup>Al and <sup>10</sup>Be burial ages from Quaternary drilling core sediments in the Yangtze River De, the Quaternary stratigraphic-time ruler of YBK1 core was established.The Quaternary sediments is overlying the Pukou group red siltstone,and it is composed of four sets of strata,which from old to new respectively are: the upper part of the early Late-Pleistocene Qidong Group,with age of 0. 1 0. 3Ma,thickness of 30. 20m; the lower part of the early Late-Pleistocene Kunshan Group,with age of 0. 1 0. 045Ma,thickness of 1. 80m; the middle part of the later Late-Pleistocene Gehu Group,with age of 0. 045 ~ 0. 01Ma,thickness of only 3. 40m; the Holocene Rudong Group,with large thickness of 55. 10m. According to the lithological characteristics of YBK1 core,Early-Pleistocene and Early-Middle-Pleistocene sediments are non-existent</p><p><strong>Keywords: </strong>Quaternary Strata; Burial dating; luminescence dating, the Yangtze River De</p>

1989 ◽  
Vol 32 (3) ◽  
pp. 296-306 ◽  
Author(s):  
Jingxing Lin ◽  
Shanlin Zhang ◽  
Jinbo Qiu ◽  
Biaoyun Wu ◽  
Huanzhong Huang ◽  
...  

AbstractEight marine transgressions have been recognized from more than 30 deep drill holes (ca. 300 m deep) through Quaternary sequences in the Yangtze River delta region. These are, in ascending order, the Rugao and Zhoupe transgressions (early Pleistocene); the Shanghai, Jiading, and Wangdian transgressions in the middle Pleistocene; the Jiangyin and Gehu transgressions in the late Pleistocene; and the Zhenjiang transgression in the Holocene. The transgressions correspond to warm periods and regressions to cold periods. The younger transgressions were not only of shorter duartion, but also of larger magnitude. The findings verify that there were five moderately warm periods during the early to middle Pleistocene and two very warm periods during the late Pleistocene in the Yangtze River delta region.


2021 ◽  
Vol 62 (10) ◽  
pp. 1127-1138
Author(s):  
I.D. Zol’nikov ◽  
I.S. Novikov ◽  
E.V. Deev ◽  
A.V. Shpansky ◽  
M.V. Mikharevich

Abstract —The paper concerns the sediment sequence, which is widespread in the Yenisei valley and in the Tuva and Minusa depressions and also present in the valleys of the southern Chulym plain. The sediments of this sequence were previously described as “Neogene mud-shedding”, as well as moraines, alluvial fan deposits, alluvium of Middle Pleistocene high terraces, and lacustrine sediments. The giant ripple marks on the Upper Yenisei terraces was commonly interpreted as ribbed moraines; however, in recent studies, these ridges have been repeatedly referred to as marks of giant current ripples. Besides, some recently published papers provide description of geology of this sequence fragments suggesting its deposition by cataclysmic floods. Geomorphological analysis of the area shows Pleistocene glaciers to have been localized within the medium–high mountainous areas. The glaciers did not reach the Tuva and Minusa depressions and occupied large areas only in the Todzha basin and on the periphery of the Darkhat basin, forming a glacial dam at its outlet, which resulted in glacial-dammed lakes filling the basin completely. These lakes outburst, and the resultant flooding led to the deposition of megaflood sediments, which we refer to here as the Upper Yenisei sediment sequence. A detailed analysis of its facies architecture revealed similarity of these sediments to those of the Sal’dzhar and Inya sequences in Gorny Altai. Most of the Upper Yenisei megaflood sediments are localized in topographic lows of the Tuva and Minusa depressions. Beyond the Altai–Sayan mountainous area, the megaflood sediments of the Upper Yenisei sequence compose high terraces of the Yenisei, Chulym, Chet’, and Kiya rivers in the southern Chulym plain. The formation of Upper Yenisei sequence dates to the first half of the Late Pleistocene, inasmuch as it contains inset alluvial sediments of the second terrace of the Yenisei River. The available data allow suggesting that the Upper Yenisei sequence formed in the first Late Pleistocene regional glaciation. The Sal’dzhar sequence in Gorny Altai and the fourth terrace of the Ob’ River on the Fore-Altai plain are stratigraphic analogs of the Upper Yenisei sequence. The Upper Yenisei and Sal’dzhar sequences can thus be considered future regional markers serving as a link for the local stratigraphic schemes of the Altai–Sayan mountainous area and adjacent West Siberian plains. The results obtained call for verification by geochronological dating, first of all, by modern luminescence dating methods covering a wider chronological interval than radiocarbon dating.


2021 ◽  
Author(s):  
Parker Liautaud ◽  
Peter Huybers

<p><span>Foregoing studies have found that sea-level transitioned to becoming approximately twice as sensitive to CO</span><span><sub>2</sub></span><span> radiative forcing between the early and late Pleistocene (Chalk et al., 2017; Dyez et al., 2018). In this study we analyze the relationships among sea-level, orbital variations, and CO</span><span><sub>2</sub></span><span> observations in a time-dependent, zonally-averaged energy balance model having a simple ice sheet. Probability distributions for model parameters are inferred using a hierarchical Bayesian method representing model and data uncertainties, including those arising from uncertain geological age models. We find that well-established nonlinearities in the climate system can explain sea-level becoming 2.5x (2.1x - 4.5x) more sensitive to radiative forcing between 2 and 0 Ma. Denial-of-mechanism experiments show that the increase in sensitivity is diminished by 36% (31% - 39%) if omitting geometric effects associated with thickening of a larger ice sheet, by 81% (73% - 92%) if omitting the ice-albedo feedback, and by more than 96% (93% - 98%) if omitting both. We also show that prescribing a fixed sea-level age model leads to different inferences of ice-sheet dimension, planetary albedo, and lags in the response to radiative forcing than if using a more complete approach in which sea-level ages are jointly inferred with model physics. Consistency of the model ice-sheet with geologic constraints on the southern terminus of the Laurentide ice sheet can be obtained by prescribing lower basal shear stress during the early Pleistocene, but such more-expansive ice sheets imply lower CO</span><span><sub>2</sub></span><span> levels than would an ice-sheet having the same aspect ratio as in the late Pleistocene, exacerbating disagreements with </span><span>𝛿</span><span><sup>11</sup></span><span>B-derived CO</span><span><sub>2</sub></span><span> estimates. These results raise a number of possibilities, including that (1) geologic evidence for expansive early-Pleistocene ice sheets represents only intermittent and spatially-limited ice-margin advances, (2) </span><span>𝛿</span><span><sup>11</sup></span><span>B-derived CO</span><span><sub>2</sub></span><span> reconstructions are biased high, or (3) that another component of the global energy balance system, such as the average ice albedo or a process not included in our model, also changed through the middle Pleistocene. Future work will seek to better constrain early-Pleistocene CO</span><span><sub>2</sub></span><span> levels by way of a more complete incorporation of proxy uncertainties and biases into the Bayesian analysis.</span></p>


Author(s):  
Yang Yu ◽  
Xianyan Wang ◽  
Shuangwen Yi ◽  
Xiaodong Miao ◽  
Jef Vandenberghe ◽  
...  

River aggradation or incision at different spatial-temporal scales are governed by tectonics, climate change, and surface processes which all adjust the ratio of sediment load to transport capacity of a channel. But how the river responds to differential tectonic and extreme climate events in a catchment is still poorly understood. Here, we address this issue by reconstructing the distribution, ages, and sedimentary process of fluvial terraces in a tectonically active area and monsoonal environment in the headwaters of the Yangtze River in the eastern Tibetan Plateau, China. Field observations, topographic analyses, and optically stimulated luminescence dating reveal a remarkable fluvial aggradation, followed by terrace formations at elevations of 55−62 m (T7), 42−46 m (T6), 38 m (T5), 22−36 m (T4), 18 m (T3), 12−16 m (T2), and 2−6 m (T1) above the present floodplain. Gravelly fluvial accumulation more than 62 m thick has been dated prior to 24−19 ka. It is regarded as a response to cold climate during the last glacial maximum. Subsequently, the strong monsoon precipitation contributed to cycles of rapid incision and lateral erosion, expressed as cut-in-fill terraces. The correlation of terraces suggests that specific tectonic activity controls the spatial scale and geomorphic characteristics of the terraces, while climate fluctuations determine the valley filling, river incision and terrace formation. Debris and colluvial sediments are frequently interbedded in fluvial sediment sequences, illustrating the episodic, short-timescale blocking of the channel ca. 20 ka. This indicates the potential impact of extreme events on geomorphic evolution in rugged terrain.


2019 ◽  
Vol 116 (20) ◽  
pp. 9820-9824 ◽  
Author(s):  
Xiu-Jie Wu ◽  
Shu-Wen Pei ◽  
Yan-Jun Cai ◽  
Hao-Wen Tong ◽  
Qiang Li ◽  
...  

Middle to Late Pleistocene human evolution in East Asia has remained controversial regarding the extent of morphological continuity through archaic humans and to modern humans. Newly found ∼300,000-y-old human remains from Hualongdong (HLD), China, including a largely complete skull (HLD 6), share East Asian Middle Pleistocene (MPl) human traits of a low vault with a frontal keel (but no parietal sagittal keel or angular torus), a low and wide nasal aperture, a pronounced supraorbital torus (especially medially), a nonlevel nasal floor, and small or absent third molars. It lacks a malar incisure but has a large superior medial pterygoid tubercle. HLD 6 also exhibits a relatively flat superior face, a more vertical mandibular symphysis, a pronounced mental trigone, and simple occlusal morphology, foreshadowing modern human morphology. The HLD human fossils thus variably resemble other later MPl East Asian remains, but add to the overall variation in the sample. Their configurations, with those of other Middle and early Late Pleistocene East Asian remains, support archaic human regional continuity and provide a background to the subsequent archaic-to-modern human transition in the region.


2006 ◽  
Vol 65 (1) ◽  
pp. 70-77 ◽  
Author(s):  
Neil F. Glasser ◽  
Stephan Harrison ◽  
Susan Ivy-Ochs ◽  
Geoffrey A.T. Duller ◽  
Peter W. Kubik

AbstractThis paper presents data on the extent of the North Patagonian Icefield during the Late Pleistocene–Holocene transition using cosmogenic nuclide exposure age and optically stimulated luminescence dating. We describe geomorphological and geochronological evidence for glacier extent in one of the major valleys surrounding the North Patagonian Icefield, the Rio Bayo valley. Geomorphological mapping provides evidence for the existence of two types of former ice masses in this area: (i) a large outlet glacier of the North Patagonian Icefield, which occupied the main Rio Bayo valley, and (ii) a number of small glaciers that developed in cirques on the slopes of the mountains surrounding the valley. Cosmogenic nuclide exposure-age dating of two erratic boulders on the floor of the Rio Bayo valley indicate that the outlet glacier of the icefield withdrew from the Rio Bayo valley after 10,900 ± 1000 yr (the mean of two boulders dated to 11,400 ± 900 yr and 10,500 ± 800 yr). Single-grain optically stimulated luminescence (OSL) dating of an ice-contact landform constructed against this glacier indicates that this ice mass remained in the valley until at least 9700 ± 700 yr. The agreement between the two independent dating techniques (OSL and cosmogenic nuclide exposure age dating) increases our confidence in these age estimates. A date obtained from a boulder on a cirque moraine above the main valley indicates that glaciers advanced in cirques surrounding the icefield some time around 12,500 ± 900 yr. This evidence for an expanded North Patagonian Icefield between 10,900 ± 1000 yr and 9700 ± 700 yr implies cold climatic conditions dominated at this time.


2020 ◽  
Author(s):  
Galina Faershtein ◽  
Naomi Porat ◽  
Ari Matmon

Abstract. Optically stimulated luminescence (OSL) on quartz is an established technique for dating late Pleistocene to late Holocene sediments. Unfortunately, this method is often limited to up to 100 ka (thousands of years). Recent developments in new extended range luminescence techniques show great potential for dating older sediments of middle and even early Pleistocene age. These methods include thermally transferred OSL (TT-OSL) and violet stimulated luminescence (VSL) for quartz and post infrared-infrared stimulated luminescence (pIRIR) for feldspar. Here we investigate the luminescence behavior of the TT-OSL, VSL and pIRIR signals of quartz and feldspar minerals of aeolian sediments of Nilotic origin from the eastern Mediterranean. We sampled a 15 m thick sequence (Kerem Shalom) comprising sandy calcic paleosols, which is part of a sand sheet that covers an extensive region in south-western Israel. Dose recovery and bleaching experiments under natural conditions indicated that the pIRIR250 signal is the most suitable for dating the Nilotic feldspar. Luminescence intensity profiles revealed natural saturation of the three signals at the same depth of ~6 m, indicating that ages of samples below that depth are minimum ages. Using TT-OSL and pIRIR250, a minimum age of 715 ka, for the base of the section was obtained, suggesting aeolian sand accumulation along the eastern Mediterranean coastal plain already since the early Pleistocene. Our results indicate that both TT-OSL and pIRIR250 can accurately date middle Pleistocene aeolian sediments of Nilotic origin and that minimum ages can be provided for early Pleistocene samples.


2018 ◽  
Author(s):  
Johanna L.A. Paijmans ◽  
Axel Barlow ◽  
Daniel W. Förster ◽  
Kirstin Henneberger ◽  
Matthias Meyer ◽  
...  

AbstractBackgroundResolving the historical biogeography of the leopard(Panthera pardus)is a complex issue, because patterns inferred from fossils and from molecular data lack congruence. Fossil evidence supports an African origin, and suggests that leopards were already present in Eurasia during the Early Pleistocene. Analysis of DNA sequences however, suggests a more recent, Middle Pleistocene shared ancestry of Asian and African leopards. These contrasting patterns led researchers to propose a two-stage hypothesis of leopard dispersal out of Africa: an initial Early Pleistocene colonisation of Asia and a subsequent replacement by a second colonisation wave during the Middle Pleistocene. The status of Late Pleistocene European leopards within this scenario is unclear: were these populations remnants of the first dispersal, or do the last surviving European leopards share more recent ancestry with their African counterparts?ResultsIn this study, we generate and analyse mitogenome sequences from historical samples that span the entire modern leopard distribution, as well as from Late Pleistocene remains. We find a deep bifurcation between African and Eurasian mitochondrial lineages (∼710 Ka), with the European ancient samples as sister to all Asian lineages (∼483 Ka). The modern and historical mainland Asian lineages share a relatively recent common ancestor (∼122 Ka), and we find one Javan sample nested within these.ConclusionsThe phylogenetic placement of the ancient European leopard as sister group to Asian leopards suggests that these populations originate from the same out-of-Africa dispersal which founded the Asian lineages. The coalescence time found for the mitochondrial lineages aligns well with the earliest undisputed fossils in Eurasia, and thus encourages a re-evaluation of the identification of the much older putative leopard fossils from the region. The relatively recent ancestry of all mainland Asian leopard lineages suggests that these populations underwent a severe population bottleneck during the Pleistocene. Finally, although only based on a single sample, the unexpected phylogenetic placement of the Javan leopard could be interpreted as evidence for exchange of mitochondrial lineages between Java and mainland Asia, calling for further investigation into the evolutionary history of this subspecies.


1980 ◽  
Vol 13 (2) ◽  
pp. 213-229 ◽  
Author(s):  
Thomas M. Cronin

AbstractMarine ostracodes from 50 localities were studied to determine the age and elevation of Pleistocene sea levels in the Atlantic coastal plain from Maryland to northern Florida. Using ostracode taxon and concurrent ranges, published planktic biostratigraphic, paleomagnetic, and radiometric data, ostracode assemblage zones representing early (1.8-1.0 my), middle (0.7-0.4 my), and late (0.3-0.01 my) Pleistocene deposition were recognized and used as a basis for correlation. Ostracode biofacies signifying lagoonal, oyster bank, estuarine, open sound, and inner sublittoral environments provided estimated ranges of paleodepths for each locality. From these data the following minimum and maximum Pleistocene sea-level estimates were determined for the southeastern coastal plain: late Pleistocene, 2–10 m from Maryland to northern Florida; middle Pleistocene, 6–15 m in northern South Carolina; early Pleistocene, 4–22 m in central North Carolina, 13–35 m in southern North Carolina, and 6–27 m in South Carolina. Climatically induced glacio-eustatic sea-level fluctuations adequately account for the late Pleistocene sea-level data, but other factors, possibly differential crustal uplift, may have complicated the early Pleistocene record.


Sign in / Sign up

Export Citation Format

Share Document