Development of basinal scale glacier mass balance model: an approach based on satellite observation and energy balance components

Author(s):  
Akansha Patel ◽  
Ajanta Goswami ◽  
Thamban Meloth ◽  
Parmanand Sharma

<p>The understanding of fresh water storage in the Himalayan region is essential for water resource management of the region. As glacier mass balance is a difference between the input and output water storage in a glacier over a period, glacier mass balance can be used as an indirect method to understand the storage. In the northwestern Himalaya, microscale meteorological stations are needed for mass balance estimation due to rugged terrain and complex topography of this region. However, there are only few meteorological stations available in that region. Therefore, in this study, we have developed a new model for glacier mass balance estimation at basinal scale. This model  includes the parameterization of energy balance components viz. albedo, longwave radiation, shortwave radiation, sensible heat, latent heat and heat flux at spatial and temporal scale using earth observation data. The modeling of air temperature is performed using the multi-regression analysis over the Chenab basin of the Indian Himalayas. Simulation is driven with the 16-days Landsat optical and thermal data from 2015 to 2018 that can be used for parameterization of the variable. This model is calibrated and validated with the field data of period 2015-2016. Further, the impact of climatic change and their influence on mass balance was also assessed to understand the future glacier health and mass changes. In contrast to previous temperature index based basin scale models, this model includes most of the energy balance components for better estimation of glacier mass balance. The model can also be used to estimate possible responses of the world’s glaciers to future climate change.</p>

2005 ◽  
Vol 42 ◽  
pp. 277-283 ◽  
Author(s):  
Andrew Wright ◽  
Jemma Wadham ◽  
Martin Siegert ◽  
Adrian Luckman ◽  
Jack Kohler

AbstractA surface-energy/mass-balance model with an explicit calculation of meltwater refreezing and superimposed ice formation is applied to midre Lovénbreen, Spitsbergen, Svalbard. The model is run with meteorological measurements to represent the present climate, and run with scenarios taken from global climate model predictions based on the IS92a emissions scenario to represent future climates. Model results indicate that superimposed ice accounts for on average 37% of the total net accumulation under present conditions. The model is found to be highly sensitive to changes in the mean annual air temperature and much less sensitive to changes in the total annual precipitation. A 0.5˚C decade–1 temperature increase is predicted to cause an average mass-balance change of –0.43 ma–1, while a 2% decade–1 increase in precipitation will result in only a +0.02 ma–1 change in mass balance. An increase in temperature results in a significant decrease in the size of the accumulation area at midre Lovénbreen and hence a similar decrease in the net volume of superimposed ice. The model predicts, however, that the relative importance of superimposed ice will increase to account for >50% of the total accumulation by 2050. The results show that the refreezing of meltwater and in particular the formation of superimposed ice make an important positive contribution to the mass balance of midre Lovénbreen under present conditions and will play a vital future role in slowing down the response of glacier mass balance to climate change.


2017 ◽  
Vol 58 (75pt2) ◽  
pp. 99-109 ◽  
Author(s):  
Sayli Atul Tawde ◽  
Anil V. Kulkarni ◽  
Govindasamy Bala

ABSTRACTAn improved understanding of fresh water stored in the Himalaya is crucial for water resource management in South Asia and can be inferred from glacier mass-balance estimates. However, field investigations in the rugged Himalaya are limited to a few individual glaciers and short duration. Therefore, we have recently developed an approach that combines satellite-derived snowlines, a temperature-index melt model and the accumulation-area ratio method to estimate annual mass balance of glaciers at basin scale and for a long period. In this investigation, the mass balance of 146 glaciers in the Chandra basin, western Himalaya, is estimated from 1984 to 2012. We estimate the trend in equilibrium line altitude of the basin as +113 m decade−1and the mean mass balance as −0.61 ± 0.46 m w.e. a−1. Our basin-wide mass-balance estimates are in agreement with the geodetic method during 1999–2012. Sensitivity analysis suggests that a 20% increase in precipitation can offset changes in mass balance for a 1 °C temperature rise. A water loss of 18% of the total basin volume is estimated, and 67% for small and low-altitude glaciers during 1984–2012, indicating a looming water scarcity crisis for villages in this valley.


2007 ◽  
Vol 46 ◽  
pp. 283-290 ◽  
Author(s):  
Jing Zhang ◽  
Uma S. Bhatt ◽  
Wendell V. Tangborn ◽  
Craig S. Lingle

AbstractThe response of glaciers to changing climate is explored with an atmosphere/glacier hierarchical modeling approach, in which global simulations are downscaled with an Arctic MM5 regional model which provides temperature and precipitation inputs to a glacier mass-balance model. The mass balances of Hubbard and Bering Glaciers, south-central Alaska, USA, are simulated for October 1994–September 2004. The comparisons of the mass-balance simulations using dynamically-downscaled vs observed temperature and precipitation data are in reasonably good agreement, when calibration is used to minimize systematic biases in the MM5 downscalings. The responses of the Hubbard (a large tidewater glacier) and Bering (a large surge-type glacier) mass balances to the future climate scenario CCSM3 A1B, a ‘middle-of-the-road’ future climate in which fossil and non-fossil fuels are assumed to be used in balance, are also investigated for the period October 2010–September 2018. Hubbard and Bering Glaciers are projected to have increased accumulation, particularly on the upper glaciers, and greater ablation, particularly on the lower glaciers. The annual net balance for the entire Bering Glacier is projected to be significantly more negative, on average (–2.0ma–1w.e., compared to –1.3ma–1w.e. during the hindcast), and for the entire Hubbard Glacier somewhat less positive (0.3ma–1w.e. compared to 0.4 ma–1w.e. during the hindcast). The Hubbard Glacier mass balances include an estimated iceberg calving flux of 6.5 km3 a–1, which is assumed to remain constant.


2017 ◽  
Vol 58 (75pt2) ◽  
pp. 119-129 ◽  
Author(s):  
Kathrin Naegeli ◽  
Matthias Huss

ABSTRACT Albedo is an important parameter in the energy balance of bare-ice surfaces and modulates glacier melt rates. The prolongation of the ablation period enforces the albedo feedback and highlights the need for profound knowledge on impacts of bare-ice albedo on glacier mass balance. In this study, we assess the mass balance sensitivity of 12 Swiss glaciers with abundant long-term in-situ data on changes in bare-ice albedo. We use pixel-based bare-ice albedo derived from Landsat 8. A distributed mass-balance model is applied to the period 1997–2016 and experiments are performed to assess the impact of albedo changes on glacier mass balance. Our results indicate that glacier-wide mass-balance sensitivities to changes in bare-ice albedo correlate strongly with mean annual mass balances (r 2 = 0.81). Large alpine glaciers react more sensitively to bare-ice albedo changes due to their ablation areas being situated at lower elevations. We find average sensitivities of glacier-wide mass balance of −0.14 m w.e. a−1 per 0.1 albedo decrease. Although this value is considerably smaller than sensitivity to air temperature change, we stress the importance of the enhanced albedo feedback that will be amplified due to atmospheric warming and a suspected darkening of glacier surface in the near future.


2010 ◽  
Vol 23 (6) ◽  
pp. 1589-1606 ◽  
Author(s):  
Sven Kotlarski ◽  
Frank Paul ◽  
Daniela Jacob

Abstract A coupling interface between the regional climate model REMO and a distributed glacier mass balance model is presented in a series of two papers. The first part describes and evaluates the reanalysis-driven regional climate simulation that is used to force a mass balance model for two glaciers of the Swiss mass balance network. The detailed validation of near-surface air temperature, precipitation, and global radiation for the European Alps shows that the basic spatial and temporal patterns of all three parameters are reproduced by REMO. Compared to the Climatic Research Unit (CRU) dataset, the Alpine mean temperature is underestimated by 0.34°C. Annual precipitation shows a positive bias of 17% (30%) with respect to the uncorrected gridded ALP-IMP (CRU) dataset. A number of important and systematic model biases arise in high-elevation regions, namely, a negative temperature bias in winter, a bias of seasonal precipitation (positive or negative, depending on gridbox altitude and season), and an underestimation of springtime and overestimation of summertime global radiation. These can be expected to have a strong effect on the simulated glacier mass balance. It is recommended to account for these shortcomings by applying correction procedures before using the RCM output for subsequent mass balance modeling. Despite the obvious model deficiencies in high-elevation regions, the new interface broadens the scope of application of glacier mass balance models and will allow for a straightforward assessment of future climate change impacts.


2005 ◽  
Vol 42 ◽  
pp. 395-401 ◽  
Author(s):  
Thomas V. Schuler ◽  
Regine Hock ◽  
Miriam Jackson ◽  
Hallgeir Elvehøy ◽  
Matthias Braun ◽  
...  

AbstractAssessing the impact of possible climate change on the water resources of glacierized areas requires a reliable model of the climate–glacier-mass-balance relationship. In this study, we simulate the mass-balance evolution of Engabreen, Norway, using a simple mass-balance model based on daily temperature and precipitation data from a nearby climate station. Ablation is calculated using a distributed temperature-index method including potential direct solar radiation, while accumulation is distributed linearly with elevation. The model was run for the period 1974/75–2001/02, for which annual mass-balance measurements and meteorological data are available. Parameter values were determined by a multi-criteria validation including point measurements of mass balance, mass-balance gradients and specific mass balance. The modelled results fit the observed mass balance well. Simple sensitivity experiments indicate a high sensitivity of the mass balance to temperature changes, as expected for maritime glaciers. The results suggest, further, that the mass balance of Engabreen is more sensitive to warming during summer than during winter, while precipitation changes affect almost exclusively the winter balance.


2016 ◽  
Vol 10 (1) ◽  
pp. 133-148 ◽  
Author(s):  
R. Prinz ◽  
L. I. Nicholson ◽  
T. Mölg ◽  
W. Gurgiser ◽  
G. Kaser

Abstract. The Lewis Glacier on Mt. Kenya is one of the best studied tropical glaciers and has experienced considerable retreat since a maximum extent in the late 19th century (L19). From distributed mass and energy balance modelling, this study evaluates the current sensitivity of the surface mass and energy balance to climatic drivers, explores climate conditions under which the L19 maximum extent might have been sustained, and discusses the potential for using the glacier retreat to quantify climate change. Multi-year meteorological measurements at 4828 m provide data for input, optimization, and evaluation of a spatially distributed glacier mass balance model to quantify the exchanges of energy and mass at the glacier–atmosphere interface. Currently the glacier loses mass due to the imbalance between insufficient accumulation and enhanced melt, because radiative energy gains cannot be compensated by turbulent energy sinks. Exchanging model input data with synthetic climate scenarios, which were sampled from the meteorological measurements and account for coupled climatic variable perturbations, reveals that the current mass balance is most sensitive to changes in atmospheric moisture (via its impact on solid precipitation, cloudiness, and surface albedo). Positive mass balances result from scenarios with an increase of annual (seasonal) accumulation of 30 % (100 %), compared to values observed today, without significant changes in air temperature required. Scenarios with lower air temperatures are drier and associated with lower accumulation and increased net radiation due to reduced cloudiness and albedo. If the scenarios currently producing positive mass balances are applied to the L19 extent, negative mass balances are the result, meaning that the conditions required to sustain the glacier in its L19 extent are not reflected in today's meteorological observations using model parameters optimized for the present-day glacier. Alternatively, a balanced mass budget for the L19 extent can be achieved by changing both climate and optimized gradients (used to extrapolate the meteorological measurements over the glacier) in a manner that implies a distinctly different coupling between the glacier's local surface-air layer and its surrounding boundary layer. This result underlines the difficulty of deriving palaeoclimates for larger glacier extents on the basis of modern measurements of small glaciers.


2008 ◽  
Vol 49 ◽  
pp. 22-26 ◽  
Author(s):  
Ruzica Dadic ◽  
Javier G. Corripio ◽  
Paolo Burlando

AbstractA distributed mass-balance modeling approach is required to assess the impact of future climate scenarios on water availability in glaciated basins. Accurate estimation of water stored within the snow, firn and ice of such basins requires knowledge of the distributed snow and ice mass balance throughout the year. In this study, we estimate the annual mass balance and runoff for Haut Glacier d′Arolla, Switzerland, from 2000 to 2006. Our estimations are based on observed elevation changes from three digital elevation models (DEMs) derived from aerial photographs in September 1999 and 2005, and October 2006. In addition to these estimations, we implement a combined field observation and a distributed mass-balance modeling approach. An energy-balance model driven by meteorological variables from automatic weather stations inside the catchment area, including gravitational snow transport, is run for the period 2005–06. The model results are validated with direct snow water equivalent measurements as well as with runoff measurements. Combining the mass-balance measurements, energy-balance calculations and measured runoff, we estimate the contribution from ice melt to the runoff for this period to be 25–30%, the contribution from snowmelt 50–60% and the contribution from rain 15–25%. Our model results also show that the snow distribution affects both snow and ice melt. It is therefore important for water resources management to understand the distribution of snow in alpine catchments, as it seems to be the controlling factor for the timing of streamflow throughout the year as well as for the total availability of water.


2012 ◽  
Vol 6 (3) ◽  
pp. 641-659 ◽  
Author(s):  
W. J. J. van Pelt ◽  
J. Oerlemans ◽  
C. H. Reijmer ◽  
V. A. Pohjola ◽  
R. Pettersson ◽  
...  

Abstract. A distributed energy balance model is coupled to a multi-layer snow model in order to study the mass balance evolution and the impact of refreezing on the mass budget of Nordenskiöldbreen, Svalbard. The model is forced with output from the regional climate model RACMO and meteorological data from Svalbard Airport. Extensive calibration and initialisation are performed to increase the model accuracy. For the period 1989–2010, we find a mean net mass balance of −0.39 m w.e. a−1. Refreezing contributes on average 0.27 m w.e. a−1 to the mass budget and is most pronounced in the accumulation zone. The simulated mass balance, radiative fluxes and subsurface profiles are validated against observations and are generally in good agreement. Climate sensitivity experiments reveal a non-linear, seasonally dependent response of the mass balance, refreezing and runoff to changes in temperature and precipitation. It is shown that including seasonality in climate change, with less pronounced summer warming, reduces the sensitivity of the mass balance and equilibrium line altitude (ELA) estimates in a future climate. The amount of refreezing is shown to be rather insensitive to changes in climate.


2015 ◽  
Vol 9 (4) ◽  
pp. 3887-3924
Author(s):  
R. Prinz ◽  
L. I. Nicholson ◽  
T. Mölg ◽  
W. Gurgiser ◽  
G. Kaser

Abstract. The Lewis Glacier on Mt Kenya is one of the best studied tropical glaciers and has experienced considerable retreat since a maximum extent in the late 19th century (L19). From distributed mass and energy balance modelling, this study evaluates the current sensitivity of the surface mass and energy balance to climatic drivers, explores climate conditions under which the L19 maximum extent might have sustained, and discusses the potential for using the glacier retreat to quantify climate change. Multiyear meteorological measurements at 4828 m provide data for input, optimization and evaluation of a spatially distributed glacier mass balance model to quantify the exchanges of energy and mass at the glacier–atmosphere interface. Currently the glacier loses mass due to the imbalance between insufficient accumulation and enhanced melt, because radiative energy gains cannot be compensated by turbulent energy sinks. Exchanging model input data with synthetic climate scenarios, which were sampled from the meteorological measurements and account for coupled climatic variable perturbations, reveal that the current mass balance is most sensitive to changes in atmospheric moisture (via its impact on solid precipitation, cloudiness and surface albedo). Positive mass balances result from scenarios with an increase of annual (seasonal) accumulation of 30 % (100 %), compared to values observed today, without significant changes in air temperature required. Scenarios with lower air temperatures are drier and associated with lower accumulation and increased net radiation due to reduced cloudiness and albedo. If the scenarios currently producing positive mass balances are applied to the L19 extent, negative mass balances are the result, meaning that the conditions required to sustain the glacier in its L19 extent are not reflected in today's observations. Alternatively, a balanced mass budget for the L19 extent can be explained by changing model parameters that imply a distinctly different coupling between the glacier's local surface-air layer and its surrounding boundary-layer. This result underlines the difficulty of deriving paleoclimates for larger glacier extents on the basis of modern measurements of small glaciers.


Sign in / Sign up

Export Citation Format

Share Document