Glacial isostatic adjustment near the center of the former Patagonian Ice Sheet (48°S) during the last 16.5 kyr

Author(s):  
Matthias Troch ◽  
Sebastien Bertrand ◽  
Carina B. Lange ◽  
Paola Cardenas ◽  
Helge Arz ◽  
...  

<p>Our understanding of glacial isostatic rebound across Patagonia is highly limited, despite its importance to constrain past ice volume estimates and better comprehend relative sea-level variations. With this in mind, our research objective is to reconstruct the magnitude and rate of Late Glacial to Holocene glacial isostatic adjustment near the center of the former Patagonian Ice Sheet. We focus on Larenas Bay (48°S; 1.26 km<sup>2</sup>), which is connected to Baker Channel through a shallow (<em>ca.</em> 7.4 m) and narrow (<em>ca.</em> 150 m across) inlet, and hence has the potential to record periods of basin isolation and marine ingression. The paleoenvironmental evolution of the bay was investigated through a sedimentological analysis of a 9.2 m long, radiocarbon-dated, sediment core covering the last 16.8 cal. kyr BP. Salinity indicators, including diatom paleoecology, alkenone concentrations and CaCO<sub>3</sub> content, were used to reconstruct the bay’s connectivity to the fjord. Results indicate that Larenas Bay was a marine environment before 16.5 cal. kyr BP and after 9.1 cal. kyr BP, but that it was disconnected from Baker Channel in-between. We infer that glacial isostatic adjustment outpaced global sea-level rise between 16.5 – 9.1 cal. kyr BP. During the Late Glacial - Holocene transition, the center of the former Patagonian Ice Sheet rose <em>ca.</em> 96 m, at an average rate of 1.30 cm/year. During the remainder of the Holocene, glacial isostatic adjustment continued (<em>ca.</em> 19.5 m), but at a slower average pace of 0.21 cm/year. Comparisons between multi-centennial variations in the salinity indicators and existing records of global sea-level rise suggest that the glacial isostatic adjustment rate fluctuated during these time intervals, in agreement with local glacier dynamics. More specifically, most of the glacial isostatic adjustment registered between 16.5 – 9.1 cal. kyr BP seems to have occurred before meltwater pulse 1A (14.5 – 14.0 kyr BP). Likewise, it appears that the highest Holocene glacial isostatic rebound rates occurred during the last 1.4 kyr, most likely in response to glacier recession from Neoglacial maxima. This implies a relatively rapid response of the local solid earth to ice unloading, which agrees with independent modelling studies investigating contemporary uplift. We conclude that the center of the former Patagonian Ice Sheet experienced a glacial isostatic adjustment of <em>ca.</em> 115 m over the last 16.5 kyr, and that >80% occurred during the Late Glacial and early Holocene.</p>

2014 ◽  
Vol 27 (23) ◽  
pp. 8740-8746 ◽  
Author(s):  
Florence Chen ◽  
Sarah Friedman ◽  
Charles G. Gertler ◽  
James Looney ◽  
Nizhoni O’Connell ◽  
...  

Abstract Peak eustatic sea level (ESL), or minimum ice volume, during the protracted marine isotope stage 11 (MIS11) interglacial at ~420 ka remains a matter of contention. A recent study of high-stand markers of MIS11 age from the tectonically stable southern coast of South Africa estimated a peak ESL of 13 m. The present study refines this estimate by taking into account both the uncertainty in the correction for glacial isostatic adjustment (GIA) and the geographic variability of sea level change following polar ice sheet collapse. In regard to the latter, the authors demonstrate, using gravitationally self-consistent numerical predictions of postglacial sea level change, that rapid melting from any of the three major polar ice sheets (West Antarctic, Greenland, or East Antarctic) will lead to a local sea level rise in southern South Africa that is 15%–20% higher than the eustatic sea level rise associated with the ice sheet collapse. Taking this amplification and a range of possible GIA corrections into account and assuming that the tectonic correction applied in the earlier study is correct, the authors revise downward the estimate of peak ESL during MIS11 to 8–11.5 m.


1992 ◽  
Vol 29 (11) ◽  
pp. 2418-2425 ◽  
Author(s):  
A. Mark Tushingham

Churchill, Manitoba, is located near the centre of postglacial uplift caused by the Earth's recovery from the melting of the Laurentide Ice Sheet. The value of present-day uplift at Churchill has important implications in the study of postglacial uplift in that it can aid in constraining the thickness of the ice sheet and the rheology of the Earth. The tide-gauge record at Churchill since 1940 is examined, along with nearby Holocene relative sea-level data, geodetic measurements, and recent absolute gravimetry measurements, and a present-day rate of uplift of 8–9 mm/a is estimated. Glacial isostatic adjustment models yield similar estimates for the rate of uplift at Churchill. The effects of the tide-gauge record of the diversion of the Churchill River during the mid-1970's are discussed.


2013 ◽  
Vol 5 (2) ◽  
pp. 2345-2388 ◽  
Author(s):  
P. Schmidt ◽  
B. Lund ◽  
J-O. Näslund

Abstract. In this study we compare a recent reconstruction of the Weichselian ice-sheet as simulated by the University of Main ice-sheet model (UMISM) to two reconstructions commonly used in glacial isostatic adjustment (GIA) modeling: ICE-5G and ANU (also known as RSES). The UMISM reconstruction is carried out on a regional scale based on thermo-mechanical modelling whereas ANU and ICE-5G are global models based on the sea-level equation. The Weichselian ice-sheet in the three models are compared directly in terms of ice volume, extent and thickness, as well as in terms of predicted glacial isostatic adjustment in Fennoscandia. The three reconstructions display significant differences. UMISM and ANU includes phases of pronounced advance and retreat prior to the last glacial maximum (LGM), whereas the thickness and areal extent of the ICE-5G ice-sheet is more or less constant up until LGM. The final retreat of the ice-sheet initiates at earliest time in ICE-5G and latest in UMISM, while ice free conditions are reached earliest in UMISM and latest in ICE-5G. The post-LGM deglaciation style also differs notably between the ice models. While the UMISM simulation includes two temporary halts in the deglaciation, the later during the Younger Dryas, ANU only includes a decreased deglaciation rate during Younger Dryas and ICE-5G retreats at a relatively constant pace after an initial slow phase. Moreover, ANU and ICE-5G melt relatively uniformly over the entire ice-sheet in contrast to UMISM which melts preferentially from the edges. We find that all three reconstructions fit the present day uplift rates over Fennoscandia and the observed relative sea-level curve along the Ångerman river equally well, albeit with different optimal earth model parameters. Given identical earth models, ICE-5G predicts the fastest present day uplift rates and ANU the slowest, ANU also prefers the thinnest lithosphere. Moreover, only for ANU can a unique best fit model be determined. For UMISM and ICE-5G there is a range of earth models that can reproduce the present day uplift rates equally well. This is understood from the higher present day uplift rates predicted by ICE-5G and UMISM, which results in a bifurcation in the best fit mantle viscosity. Comparison of the uplift histories predicted by the ice-sheets indicate that inclusion of relative sea-level data in the data fit can reduce the observed ambiguity. We study the areal distributions of present day residual surface velocities in Fennoscandia and show that all three reconstructions generally over-predict velocities in southwestern Fennoscandia and that there are large differences in the fit to the observational data in Finland and northernmost Sweden and Norway. These difference may provide input to further enhancements of the ice-sheet reconstructions.


2013 ◽  
Vol 9 (1) ◽  
pp. 353-366 ◽  
Author(s):  
A. Quiquet ◽  
C. Ritz ◽  
H. J. Punge ◽  
D. Salas y Mélia

Abstract. As pointed out by the forth assessment report of the Intergovernmental Panel on Climate Change, IPCC-AR4 (Meehl et al., 2007), the contribution of the two major ice sheets, Antarctica and Greenland, to global sea level rise, is a subject of key importance for the scientific community. By the end of the next century, a 3–5 °C warming is expected in Greenland. Similar temperatures in this region were reached during the last interglacial (LIG) period, 130–115 ka BP, due to a change in orbital configuration rather than to an anthropogenic forcing. Ice core evidence suggests that the Greenland ice sheet (GIS) survived this warm period, but great uncertainties remain about the total Greenland ice reduction during the LIG. Here we perform long-term simulations of the GIS using an improved ice sheet model. Both the methodologies chosen to reconstruct palaeoclimate and to calibrate the model are strongly based on proxy data. We suggest a relatively low contribution to LIG sea level rise from Greenland melting, ranging from 0.7 to 1.5 m of sea level equivalent, contrasting with previous studies. Our results suggest an important contribution of the Antarctic ice sheet to the LIG highstand.


2013 ◽  
Vol 38 (1) ◽  
pp. 19-54 ◽  
Author(s):  
Vena W. Chu

Understanding Greenland ice sheet (GrIS) hydrology is essential for evaluating response of ice dynamics to a warming climate and future contributions to global sea level rise. Recently observed increases in temperature and melt extent over the GrIS have prompted numerous remote sensing, modeling, and field studies gauging the response of the ice sheet and outlet glaciers to increasing meltwater input, providing a quickly growing body of literature describing seasonal and annual development of the GrIS hydrologic system. This system is characterized by supraglacial streams and lakes that drain through moulins, providing an influx of meltwater into englacial and subglacial environments that increases basal sliding speeds of outlet glaciers in the short term. However, englacial and subglacial drainage systems may adjust to efficiently drain increased meltwater without significant changes to ice dynamics over seasonal and annual scales. Both proglacial rivers originating from land-terminating glaciers and subglacial conduits under marine-terminating glaciers represent direct meltwater outputs in the form of fjord sediment plumes, visible in remotely sensed imagery. This review provides the current state of knowledge on GrIS surface water hydrology, following ice sheet surface meltwater production and transport via supra-, en-, sub-, and proglacial processes to final meltwater export to the ocean. With continued efforts targeting both process-level and systems analysis of the hydrologic system, the larger picture of how future changes in Greenland hydrology will affect ice sheet glacier dynamics and ultimately global sea level rise can be advanced.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael E. Weber ◽  
Nicholas R. Golledge ◽  
Chris J. Fogwill ◽  
Chris S. M. Turney ◽  
Zoë A. Thomas

AbstractEmerging ice-sheet modeling suggests once initiated, retreat of the Antarctic Ice Sheet (AIS) can continue for centuries. Unfortunately, the short observational record cannot resolve the tipping points, rate of change, and timescale of responses. Iceberg-rafted debris data from Iceberg Alley identify eight retreat phases after the Last Glacial Maximum that each destabilized the AIS within a decade, contributing to global sea-level rise for centuries to a millennium, which subsequently re-stabilized equally rapidly. This dynamic response of the AIS is supported by (i) a West Antarctic blue ice record of ice-elevation drawdown >600 m during three such retreat events related to globally recognized deglacial meltwater pulses, (ii) step-wise retreat up to 400 km across the Ross Sea shelf, (iii) independent ice sheet modeling, and (iv) tipping point analysis. Our findings are consistent with a growing body of evidence suggesting the recent acceleration of AIS mass loss may mark the beginning of a prolonged period of ice sheet retreat and substantial global sea level rise.


2020 ◽  
Vol 14 (3) ◽  
pp. 833-840 ◽  
Author(s):  
Heiko Goelzer ◽  
Violaine Coulon ◽  
Frank Pattyn ◽  
Bas de Boer ◽  
Roderik van de Wal

Abstract. Estimating the contribution of marine ice sheets to sea-level rise is complicated by ice grounded below sea level that is replaced by ocean water when melted. The common approach is to only consider the ice volume above floatation, defined as the volume of ice to be removed from an ice column to become afloat. With isostatic adjustment of the bedrock and external sea-level forcing that is not a result of mass changes of the ice sheet under consideration, this approach breaks down, because ice volume above floatation can be modified without actual changes in the sea-level contribution. We discuss a consistent and generalised approach for estimating the sea-level contribution from marine ice sheets.


Sign in / Sign up

Export Citation Format

Share Document