Humming trains as an opportune source for imaging the shallow crust

Author(s):  
Laura Pinzon-Rincon ◽  
François Lavoué ◽  
Aurélien Mordret ◽  
Pierre Boué ◽  
Florent Brenguier ◽  
...  

<div><span>Freight trains are one of the most powerful and persistent seismic sources of cultural noise. They generate tremors equivalent to earthquakes of magnitude 1 that can be detectable up to 100 km distance.  Here, we propose to use the freight train passages as an opportunistic source of noise for passive seismic interferometry (SI). Usually, passive SI relies on blind correlations of long time series of noise for imaging and monitoring purposes. We suggest an alternative method based on noise source characterization, signal and station pairs selection, and specific seismic phase extraction (surface and body waves) for each virtual source to imaging the subsurface. To illustrate our novel method's potential, we show a case study in Canada's mineral exploration context, where we use retrieved body waves to estimate travel time tomography. This noise recovery approach to create valuable sources could be applied for several seismic noise sources and in different contexts improving spatial and temporal resolutions.</span></div>

Author(s):  
Laura Pinzon-Rincon ◽  
François Lavoué ◽  
Aurélien Mordret ◽  
Pierre Boué ◽  
Florent Brenguier ◽  
...  

Abstract Seismologists are eagerly seeking new and preferably low-cost ways to map and track changes in the complex structure of the top few kilometers of the crust. By understanding it better, they can build on what is known regarding important, practical issues. These include telling us whether imminent earthquakes and volcanic eruptions are generating telltale underground signs of hazard, about mitigation of induced seismicity such as from deep injection of wastewater, how the Earth and its atmosphere couple, and where accessible natural resources are. Passive seismic imaging usually relies on blind correlations within extended recordings of Earth’s ceaseless “hum” or coda of well-mixed, small vibrations. In this article, we propose a complementary approach. It is seismic interferometry using opportune sources—specifically ones not stationary in time and moving in a well-understood configuration. Its interpretation relies on an accurate understanding of how these sources radiate seismic waves, precise timing, careful placement of pairs of listening stations, and seismic phase differentiation (surface and body waves). Massive freight trains were only recently recognized as such a persistent, powerful cultural (human activity-caused) seismic source. One train passage may generate a tremor with an energy output of a magnitude 1 earthquake and be detectable for up to 100 km from the track. We discuss the source mechanisms of train tremors and review the basic theory on sources. Finally, we present case studies of body- and surface-wave retrieval as an aid to mineral exploration in Canada and to monitoring of a southern California fault zone. We believe noise recovery from this new signal source, together with dense data acquisition technologies such as nodes or distributed acoustic sensing, will deeply transform our ability to monitor activity in the shallow crust at sharpened resolution in time and space.


2022 ◽  
Vol 41 (1) ◽  
pp. 54-61
Author(s):  
Moyagabo K. Rapetsoa ◽  
Musa S. D. Manzi ◽  
Mpofana Sihoyiya ◽  
Michael Westgate ◽  
Phumlani Kubeka ◽  
...  

We demonstrate the application of seismic methods using in-mine infrastructure such as exploration tunnels to image platinum deposits and geologic structures using different acquisition configurations. In 2020, seismic experiments were conducted underground at the Maseve platinum mine in the Bushveld Complex of South Africa. These seismic experiments were part of the Advanced Orebody Knowledge project titled “Developing technologies that will be used to obtain information ahead of the mine face.” In these experiments, we recorded active and passive seismic data using surface nodal arrays and an in-mine seismic land streamer. We focus on analyzing only the in-mine active seismic portion of the survey. The tunnel seismic survey consisted of seven 2D profiles in exploration tunnels, located approximately 550 m below ground surface and a few meters above known platinum deposits. A careful data-processing approach was adopted to enhance high-quality reflections and suppress infrastructure-generated noise. Despite challenges presented by the in-mine noisy environment, we successfully imaged the platinum deposits with the aid of borehole data and geologic models. The results open opportunities to adapt surface-based geophysical instruments to address challenging in-mine environments for mineral exploration.


2021 ◽  
Vol 263 (5) ◽  
pp. 1186-1193
Author(s):  
Yoshiharu Soeta ◽  
Ei Onogawa

Air conditioners are widely used in buildings to maintain thermal comfort for long time. Air conditioners produce sounds during operation, and air conditioners are regarded as one of the main noise sources in buildings. Most sounds produced by the air conditioner do not fluctuate over time and sound quality of the steady sounds produced by the air conditioner have been evaluated. However, air conditioners sometimes produce low-level and impulsive sounds. Customers criticizes such sounds are annoying when they sleep and they spend time quietly in the living room. The aim of this study was to determine the factors that significantly influence the psycho-physiological response to the low-level impulsive sounds produced by air conditioners. We assessed the A-weighted equivalent continuous sound pressure level (LAeq) and factors extracted from the autocorrelation function (ACF). Subjective loudness, sharpness, annoyance, and electroencephalography (EEG) were evaluated. Multiple regression analyses were performed using a linear combination of LAeq, the ACF factors, and their standard deviations. The results indicated that LAeq, the delay time of the first maximum peak, the width of the first decay of the ACF, and the magnitude and width of the IACF could predict psycho-physiological responses to air conditioner sounds.


2021 ◽  
Author(s):  
Marianne Houbiers ◽  
Sascha Bussat ◽  
Florian Schopper ◽  
Fredrik Hansteen

Abstract The lateral well position uncertainty of magnetic/gyro MWD measurements can often exceed the requirements regarding anti-collision, for optimal placement of infill wells between existing producers, or for hitting targets with limited geological extent. The positional uncertainty can be significantly reduced by implementing high-precision drill-bit localization using passive seismic data. Consequently, not only drilling risks can be reduced, but optimal reservoir drainage is ensured as well. By utilizing passive seismic recordings from the seafloor, we can "listen" to the noise generated by the BHA while drilling. Despite various noise sources in the vicinity (e.g. vessels and rigs), advanced data processing and the combination of hundreds of seafloor receivers spread above the ongoing drilling, enable us to detect the drilling signal and locate the drill bit. Whereas the magnetic and gyro MWD tools have errors that accumulate with measured depth, each bit position derived from seismic (usually every 90 seconds) is completely independent. For horizontal sections, the error does not increase with measured depth, and hence can provide improved lateral accuracy. No additional BHA tool is required and the measurements are neither dependent on the magnetic nor gravitational field. Moreover, the passive seismic measurements can be used to obtain an improved lateral well position estimate. This is done by optimizing the azimuth information of the well trajectory in the minimum curvature method. A lateral uncertainty measure can be derived from the residuals between the passive measurements and the updated well path. Since 2018, we have used the continuous stream of passive data from permanent seafloor sensors at the Grane field with its reservoir depth of around 1800 m TVDSS to follow all wells with this drill bit tracking scheme. Lateral deviations from the magnetic/gyro measurements of up to 20m have been observed. The lateral position uncertainty can be as low as a couple of meters under optimal conditions.


2020 ◽  
Vol 221 (1) ◽  
pp. 683-691 ◽  
Author(s):  
F Brenguier ◽  
R Courbis ◽  
A Mordret ◽  
X Campman ◽  
P Boué ◽  
...  

SUMMARY Unveiling the mechanisms of earthquake and volcanic eruption preparation requires improving our ability to monitor the rock mass response to transient stress perturbations at depth. The standard passive monitoring seismic interferometry technique based on coda waves is robust but recovering accurate and properly localized P- and S-wave velocity temporal anomalies at depth is intrinsically limited by the complexity of scattered, diffracted waves. In order to mitigate this limitation, we propose a complementary, novel, passive seismic monitoring approach based on detecting weak temporal changes of velocities of ballistic waves recovered from seismic noise correlations. This new technique requires dense arrays of seismic sensors in order to circumvent the bias linked to the intrinsic high sensitivity of ballistic waves recovered from noise correlations to changes in the noise source properties. In this work we use a dense network of 417 seismometers in the Groningen area of the Netherlands, one of Europe's largest gas fields. Over the course of 1 month our results show a 1.5 per cent apparent velocity increase of the P wave refracted at the basement of the 700-m-thick sedimentary cover. We interpret this unexpected high value of velocity increase for the refracted wave as being induced by a loading effect associated with rainfall activity and possibly canal drainage at surface. We also observe a 0.25 per cent velocity decrease for the direct P-wave travelling in the near-surface sediments and conclude that it might be partially biased by changes in time in the noise source properties even though it appears to be consistent with complementary results based on ballistic surface waves presented in a companion paper and interpreted as a pore pressure diffusion effect following a strong rainfall episode. The perspective of applying this new technique to detect continuous localized variations of seismic velocity perturbations at a few kilometres depth paves the way for improved in situ earthquake, volcano and producing reservoir monitoring.


2020 ◽  
Author(s):  
Zhongyuan Jin

<p>In recent years, seismic interferometry (SI) has been widely used in passive seismic data, it allows to retrieve new seismic responses among physical receivers by cross-correlation or multidimensional deconvolution (MDD). Retrieval of reflected body waves from passive seismic data has been proved to be feasible. Marchenko method, as a new technique, retrieves Green’s functions directly inside the medium without any physical receiver there. Marchenko method retrieves precise Green’s functions and the up-going and down-going Green’s functions can be used in target-oriented Marchenko imaging, and internal multiples related artifacts in Marchenko image can be suppressed. </p><p>Conventional Marchenko imaging uses active seismic data, in this abstract, we propose the method of passive seismic Marchenko imaging (PSMI) which retrieves Green’s functions from ambient noise signal. PSMI employs MDD method to obtain the reflection response without free-surface interaction as an input for Marchenko algorithm, such that free-surface multiples in the retrieved shot gathers can be eliminated, besides, internal multiples don’t contribute to final Marchenko image, which means both free-surface multiples and internal multiples have been taken into account. Although the retrieved shot gathers are contaminated by noises, the up-going and down-going Green’s functions can be still retrieved. Results of numerical tests validate PSMI’s feasibility and robustness. PSMI provides a new way to image the subsurface structure, it combines the low-cost property of passive seismic acquisition and target-oriented imaging property of Marchenko imaging, as well as the advantage that there are no artifacts caused by internal multiples and free-surface multiples.</p><p>Overall, the significant difference between PSMI and conventional Marchenko imaging is that passive seismic data is used into Marchenko scheme, which extends the Marchenko imaging to passive seismic field. Passive seismic Marchenko imaging avoids the effects of free-surface multiples and internal multiples in the retrieved shot gathers. PSMI combines the low-cost property of passive seismic acquisition and target-oriented imaging property of Marchenko imaging which is promising in future field seismic survey.</p><p>This work is supported by the Fundamental Research Funds for the Central Universities (JKY201901-03). </p>


2020 ◽  
Author(s):  
Florent Brenguier ◽  
Aurelien Mordret ◽  
Yehuda Ben-Zion ◽  
Frank Vernon ◽  
Pierre Boué ◽  
...  

<p>Laboratory experiments report that detectable seismic velocity changes should occur in the vicinity of fault zones prior to earthquakes. However, operating permanent active seismic sources to monitor natural faults at seismogenic depth has been nearly impossible to achieve. The FaultScan project (Univ. Grenoble Alpes, Univ. Cal. San Diego, Univ. South. Cal.) aims at leveraging permanent cultural sources of ambient seismic noise to continuously probe fault zones at a few kilometers depth with seismic interferometry. Results of an exploratory seismic experiment in Southern California demonstrate that correlations of train-generated seismic signals allow daily reconstruction of direct P body-waves probing the San Jacinto Fault down to 4 km depth. In order to study long-term earthquake preparation processes we will monitor the San Jacinto Fault using such approach for at least two years by deploying dense seismic arrays in the San Jacinto Fault region. The outcome of this project may facilitate monitoring the entire San Andreas Fault system using the railway and highway network of California. We acknowledge support from the European Research Council under grant No.~817803, FAULTSCAN.</p>


2021 ◽  
Author(s):  
Diako Hariri Naghadeh ◽  
Christopher J Bean ◽  
Patrick Smith ◽  
Sergei Lebedev ◽  
Huda Mohamed

<p>Since explosive and impulsive seismic sources such as dynamite, air guns, gas guns, or even vibroseis can have a big impact on the environment, some companies have decided to record ambient seismic noise and use it to estimate the physical properties of the subsurface. Big challenges arise when the aim is extracting body-waves from recorded passive signals, especially in the presence of strong surface waves. In passive seismic signals, such body-waves are usually weak in comparison to surface waves which are much more prominent. To understand the characteristics of passive signals and the effect of natural source locations, three simple synthetic models were created. To extract body-waves from simulated passive signals we propose and test a Radon-correlation method. This is a time-spatial correlation of amplitudes with a train of time-shifted Dirac delta functions through different hyperbolic paths. It is tested on a two-layer horizontal model, three-layer model which includes a dipping layer (with and without lateral heterogeneity) and also on synthetic Marmousi model data sets. Synthetic tests show that the introduced method is able to reconstruct reflection events at the correct time-offset positions which are hidden in results obtained by the general cross-correlation method. Also, a depth migrated section shows a good match between imaged-horizons and the true model. It is possible to generate off-end virtual gathers by applying the method to a linear array of receivers and to construct a velocity model by semblance velocity analysis of individually extracted gathers.</p>


2021 ◽  
Author(s):  
Yixiao Sheng ◽  
Florent Brenguier ◽  
Pierre Boué ◽  
Aurélien Mordret ◽  
Yehuda Ben-Zion ◽  
...  

<div>Recent studies (Brenguier et al., 2019; Pinzon-Rincon et al., 2020) have successfully retrieved body waves between seismic arrays through the correlations of train-generated seismic signals. It remains uncertain whether these train-derived body waves are suitable for long-term seismic monitoring, which requires repeatable measurements over the years. This study tests the feasibility of obtaining stable body waves between individual broadband stations, using freight trains as noise sources. We use stations close to the railroad as markers to identify trains and pinpoint their potential locations. We select proper station pairs and perform seismic interferometry, focusing on the time windows when trains are detected. We test our workflow in southern California, with the freight trains running through the Coachella Valley. We successfully retrieve stable body-wave signals over ten years. We perform a weekly stacking to improve the signal-to-noise ratio and estimate the relative time shift. Our preliminary time-shift measurements reveal a systematic long-term increasing trend for station pairs locating on two sides of the San Jacinto fault. The next step is to examine the results statistically to reduce the bias introduced by moving sources. Despite that the long-term trend still needs further study, our experiment demonstrates that it is possible to perform long-term seismic monitoring using train generated seismic signals.</div>


Sign in / Sign up

Export Citation Format

Share Document