Supplementary material to "Technical note: Snow Water Equivalence Estimation (SWEE) Algorithm from Snow Depth Time Series Using a Snow Density Model"

Author(s):  
Noriaki Ohara ◽  
Siwei He ◽  
Andrew D. Parsekian ◽  
Thijs Kelleners
2018 ◽  
Author(s):  
Noriaki Ohara ◽  
Siwei He ◽  
Andrew D. Parsekian ◽  
Thijs Kelleners

Abstract. Snow water equivalence (SWE) is typically computed from snow weight by the SNOTEL system in the US. However, a snow pillow, the main snow weight sensor used by SNOTEL, requires a large, open, flat area (at least 9 square meters) and substantial maintenance costs. This article presents the snow water equivalence estimation (SWEE) algorithm that estimates the SWE evolution merely from continuous snow depth and temperature measurements using common sensors. The key component is a depth-averaged snow density model that is available in the literature, but is underutilized. Here, we demonstrate that the snow density model can estimate mass exchanges (SWE changes due to snowfall, erosion, deposition, and snowmelt) as well as the SWE. The SWEE algorithm can potentially increase the number of snow monitoring locations because snow depth and temperature sensors are considerably more accessible and economical than snow weighing sensor.


2013 ◽  
Vol 7 (3) ◽  
pp. 2943-2977
Author(s):  
G. A. Sexstone ◽  
S. R. Fassnacht

Abstract. This study uses a combination of field measurements and Natural Resource Conservation Service (NRCS) operational snow data to understand the drivers of snow water equivalent (SWE) spatial variability at the basin scale. Historic snow course snowpack density observations were analyzed within a multiple linear regression snow density model to estimate SWE directly from snow depth measurements. Snow surveys were completed on or about 1 April 2011 and 2012 and combined with NRCS operational measurements to investigate the spatial variability of SWE. Bivariate relations and multiple linear regression models were developed to understand the relation of SWE with terrain and canopy variables (derived using a geographic information system (GIS)). Calculation of SWE directly from snow depth measurement using the snow density model has strong statistical performance and model validation suggests the model is transferable to independent data within the bounds of the original dataset. This pathway of estimating SWE directly from snow depth measurement is useful when evaluating snowpack properties at the basin scale, where many time consuming measurements of SWE are often not feasible. During both water year (WY) 2011 and 2012, elevation and location (UTM Easting and UTM Northing) were the most important model variables, suggesting that orographic precipitation and storm track patterns are likely consistent drivers of basin scale SWE variability. Terrain characteristics, such as slope, aspect, and curvature, were also shown to be important variables, but to a lesser extent at the scale of interest.


2021 ◽  
Author(s):  
Colleen Mortimer ◽  
Lawrence Mudryk ◽  
Chris Derksen ◽  
Kari Luojus ◽  
Pinja Venalainen ◽  
...  

<p>The European Space Agency Snow CCI+ project provides global homogenized long time series of daily snow extent and snow water equivalent (SWE). The Snow CCI SWE product is built on the Finish Meteorological Institute's GlobSnow algorithm, which combines passive microwave data with in situ snow depth information to estimate SWE. The CCI SWE product improves upon previous versions of GlobSnow through targeted changes to the spatial resolution, ancillary data, and snow density parameterization.</p><p>Previous GlobSnow SWE products used a constant snow density of 0.24 kg m<sup>-3</sup> to convert snow depth to SWE. The CCI SWE product applies spatially and temporally varying density fields, derived by krigging in situ snow density information from historical snow transects to correct biases in estimated SWE. Grid spacing was improved from 25 km to 12.5 km by applying an enhanced spatial resolution microwave brightness temperature dataset. We assess step-wise how each of these targeted changes acts to improve or worsen the product by evaluating with snow transect measurements and comparing hemispheric snow mass and trend differences.</p><p>Together, when compared to GlobSnow v3, these changes improved RMSE by ~5 cm and correlation by ~0.1 against a suite of snow transect measurements from Canada, Finland, and Russia. Although the hemispheric snow mass anomalies of CCI SWE and GlobSnow v3 are similar, there are sizeable differences in the climatological SWE, most notably a one month delay in the timing of peak SWE and lower SWE during the accumulation season. These shifts were expected because the variable snow density is lower than the former fixed value of 0.24 kg m<sup>-3</sup> early in the snow season, but then increases over the course of the snow season. We also examine intermediate products to determine the relative improvements attributable solely to the increased spatial resolution versus changes due to the snow density parameterizations. Such systematic evaluations are critical to directing future product development.</p>


2008 ◽  
Vol 9 (6) ◽  
pp. 1416-1426 ◽  
Author(s):  
Naoki Mizukami ◽  
Sanja Perica

Abstract Snow density is calculated as a ratio of snow water equivalent to snow depth. Until the late 1990s, there were no continuous simultaneous measurements of snow water equivalent and snow depth covering large areas. Because of that, spatiotemporal characteristics of snowpack density could not be well described. Since then, the Natural Resources Conservation Service (NRCS) has been collecting both types of data daily throughout the winter season at snowpack telemetry (SNOTEL) sites located in the mountainous areas of the western United States. This new dataset provided an opportunity to examine the spatiotemporal characteristics of snowpack density. The analysis of approximately seven years of data showed that at a given location and throughout the winter season, year-to-year snowpack density changes are significantly smaller than corresponding snow depth and snow water equivalent changes. As a result, reliable climatological estimates of snow density could be obtained from relatively short records. Snow density magnitudes and densification rates (i.e., rates at which snow densities change in time) were found to be location dependent. During early and midwinter, the densification rate is correlated with density. Starting in early or mid-March, however, snowpack density increases by approximately 2.0 kg m−3 day−1 regardless of location. Cluster analysis was used to obtain qualitative information on spatial patterns of snowpack density and densification rates. Four clusters were identified, each with a distinct density magnitude and densification rate. The most significant physiographic factor that discriminates between clusters was proximity to a large water body. Within individual mountain ranges, snowpack density characteristics were primarily dependent on elevation.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1058 ◽  
Author(s):  
Yan Liu ◽  
Pu Zhang ◽  
Lei Nie ◽  
Jianhui Xu ◽  
Xinyu Lu ◽  
...  

Understanding the snow accumulation and melting process is of great significance for the assessment and regulation of water resources and the prevention of meltwater flooding, especially for the semiarid region in the Manas River Basin. However, the lack of long snow measurement time series in this semiarid region prevents a full understanding of the detailed local-scale snow ablation process. Additionally, the modeling of snow accumulation and melting is challenging due to parameter uncertainty. In this study, the snow ablation process in the Manas River Basin was quantitatively explored with long time-series of 3-h measurements of snow depth, snow density and snow water equivalent (SWE) at the Wulanwusu (WLWS), Hanqiazi (HQZ), and Baiyanggou (BYG) sites. This study explored the ability of the Utah energy balance (UEB) snow accumulation and melt model to simulate SWE, energy flux and water loss in the study area. Furthermore, the uncertainty in the ground surface aerodynamic roughness index zos in the UEB model was also analyzed. The results showed that: (1) noticeable variations in snow depth, SWE and snow density occurred on seasonal and interannual time scales, and variations in melting time and melting ratios occurred on short time scales; (2) a rapid decrease in snow depth did not influence the variations in SWE, and snow melting occurred during all time periods, even winter, which is a typical characteristic of snow accumulation in arid environments; (3) the UEB model accurately simulated the snow ablation processes, including SWE, snow surface temperature, and energy flux, at WLWS, HQZ, and BYG sites; (4) the lowest contribution of net radiation to melting occurred in the piedmont clinoplain, followed by the mountain desert grassland belt and mountain forest belt, whereas the contributions of net turbulence exhibited the opposite pattern; (5) the optimal zos in the UEB model was experimentally determined to be 0.01 m, and the UEB model-simulated SWE based on this value was the most consistent with the measured SWE; and (6) the results may provide theoretical and data foundations for research on the snow accumulation process at the watershed scale.


2021 ◽  
Author(s):  
Fabiana Castino ◽  
Bodo Wichura ◽  
Harald Schellander ◽  
Michael Winkler

<p>The characterization of the snow cover by snow water equivalent (SWE) is fundamental in several environmental applications, e.g., monitoring mountain water resources or defining structural design standards. However, SWE observations are usually rare compared to other snow measurements as snow depth (HS). Therefore, model-based methods have been proposed in past studies for estimating SWE, in particular for short timescales (e.g., daily). In this study, we compare two different approaches for SWE-data modelling. The first approach, based on empirical regression models (ERMs), provides the regional parametrization of the bulk snow density, which can be used to estimate SWE values from HS. In particular, we investigate the performances of four different schemes based on previously developed ERMs of bulk snow density depending on HS, date, elevation, and location. Secondly, we apply the semi-empirical multi-layer Δsnow model, which estimates SWE solely based on snow depth observations. The open source Δsnow model has been recently used for deriving a snow load map for Austria, resulting in an improved Austrian standard. A large dataset of HS and SWE observations collected by the National Weather Service in Germany (DWD) is used for calibrating and validating the models. This dataset consists of daily HS and three-times-a-week SWE observations from in total ~1000 stations operated by DWD over the period from 1950 to 2020. A leave-one-out cross validation is applied to evaluate the performance of the different model approaches. It is based on 185 time series of HS and SWE observations that are representative of the diversity of the regional snow climatology of Germany. Cross validation reveals for all ERMs: 90% of the modelled SWE time series have a root mean square error (RMSE) and a bias lower than 45 kg/m² and 2 kg/m², respectively. The Δsnow model shows the best performance with 90% of the modelled SWE time series having an RMSE lower than 30 kg/m² and bias similar to the ERMs. This comparative study provides new insights on the reliability of model-based methods for estimating SWE values. The results show that the Δsnow model and, to a lower degree, the developed ERMs can provide satisfactory performances even on short timescales. This suggest that these models can be used as reliable alternative to more complex thermodynamic snow models, even more if long-term meteorological observations aside HS are scarce.</p>


1993 ◽  
Vol 39 (132) ◽  
pp. 316-322 ◽  
Author(s):  
D. M. McClung ◽  
John Tweedy

AbstractIndividual variables found to be significant from a correlation analysis are analyzed as a function of probability of avalanching for data from Kootenay Pass, British Columbia. The analysis is compared with a similar study for data from Alta, Utah, U.S.A. The results show that the variable significance is very similar for the two areas. Primary variables include: snowfall rate, weight of new snow, water equivalent of new precipitation, total storm snow and new snow depth. Secondary variables include wind speed and direction, and new-snow density.


2014 ◽  
Vol 8 (2) ◽  
pp. 521-536 ◽  
Author(s):  
J. L. McCreight ◽  
E. E. Small

Abstract. Bulk density is a fundamental property of snow relating its depth and mass. Previously, two simple models of bulk density (depending on snow depth, date, and location) have been developed to convert snow depth observations to snow water equivalent (SWE) estimates. However, these models were not intended for application at the daily time step. We develop a new model of bulk density for the daily time step and demonstrate its improved skill over the existing models. Snow depth and density are negatively correlated at short (10 days) timescales while positively correlated at longer (90 days) timescales. We separate these scales of variability by modeling smoothed, daily snow depth (long timescales) and the observed positive and negative anomalies from the smoothed time series (short timescales) as separate terms. A climatology of fit is also included as a predictor variable. Over half a million daily observations of depth and SWE at 345 snowpack telemetry (SNOTEL) sites are used to fit models and evaluate their performance. For each location, we train the three models to the neighboring stations within 70 km, transfer the parameters to the location to be modeled, and evaluate modeled time series against the observations at that site. Our model exhibits improved statistics and qualitatively more-realistic behavior at the daily time step when sufficient local training data are available. We reduce density root mean square error (RMSE) by 9.9 and 4.5% compared to previous models while increasing R2 from 0.46 to 0.52 to 0.56 across models. Focusing on the 21-day window around peak SWE in each water year, our model reduces density RMSE by 24 and 17.4% relative to the previous models, with R2 increasing from 0.55 to 0.58 to 0.71 across models. Removing the challenge of parameter transfer over the full observational record increases R2 scores for both the existing and new models, but the gain is greatest for the new model (R2 = 0.75). Our model shows general improvement over existing models when data are more frequent than once every 5 days and at least 3 stations are available for training.


2015 ◽  
Vol 46 (4) ◽  
pp. 494-506 ◽  
Author(s):  
Oddbjørn Bruland ◽  
Åshild Færevåg ◽  
Ingelin Steinsland ◽  
Glen E. Liston ◽  
Knut Sand

Snow density is an important measure in hydrology used to convert snow depth to the snow water equivalent (SWE). A model developed by Sturm, Tara and Liston predicts the snow density by using snow depth, the snow age and a snow class defined by the location. In this work this model is extended to include location and seasonal weather-specific variables. The model is named Weather Snow Density Model (Weather SDM). A Bayesian framework is chosen, and the model is fitted to and tested for 4,040 Norwegian snow depth and densities measurements between 1998 and 2011. The final model improved the snow density predictions for the Norwegian data compared to the model of Sturm by up to 50%. Further, the Weather SDM is extended to utilize local year-specific snow density observations (Weather&ObsDensity SDM). This reduced the prediction error an additional 16%, indicating a significant improvement when utilizing information provided by annual snow density measurements.


Sign in / Sign up

Export Citation Format

Share Document