scholarly journals A Robust False Matching Points Detection Method for Remote Sensing Image Registration

Author(s):  
X. J. Shan ◽  
P. Tang

Given the influences of illumination, imaging angle, and geometric distortion, among others, false matching points still occur in all image registration algorithms. Therefore, false matching points detection is an important step in remote sensing image registration. Random Sample Consensus (RANSAC) is typically used to detect false matching points. However, RANSAC method cannot detect all false matching points in some remote sensing images. Therefore, a robust false matching points detection method based on Knearest- neighbour (K-NN) graph (KGD) is proposed in this method to obtain robust and high accuracy result. The KGD method starts with the construction of the K-NN graph in one image. K-NN graph can be first generated for each matching points and its K nearest matching points. Local transformation model for each matching point is then obtained by using its K nearest matching points. The error of each matching point is computed by using its transformation model. Last, L matching points with largest error are identified false matching points and removed. This process is iterative until all errors are smaller than the given threshold. In addition, KGD method can be used in combination with other methods, such as RANSAC. Several remote sensing images with different resolutions and terrains are used in the experiment. We evaluate the performance of KGD method, RANSAC + KGD method, RANSAC, and Graph Transformation Matching (GTM). The experimental results demonstrate the superior performance of the KGD and RANSAC + KGD methods.

Author(s):  
R. Feng ◽  
X. Li ◽  
H. Shen

<p><strong>Abstract.</strong> Mountainous remote sensing images registration is more complicated than in other areas as geometric distortion caused by topographic relief, which could not be precisely achieved via constructing local mapping functions in the feature-based framework. Optical flow algorithm estimating motion of consecutive frames in computer vision pixel by pixel is introduced for mountainous remote sensing images registration. However, it is sensitive to land cover changes that are inevitable for remote sensing image, resulting in incorrect displacement. To address this problem, we proposed an improved optical flow estimation concentrated on post-processing, namely displacement modification. First of all, the Laplacian of Gaussian (LoG) algorithm is employed to detect the abnormal value in color map of displacement. Then, the abnormal displacement is recalculated in the interpolation surface constructed by the rest accurate displacements. Following the successful coordinate transformation and resampling, the registration outcome is generated. Experiments demonstrated that the proposed method is insensitive in changeable region of mountainous remote sensing image, generating precise registration, outperforming the other local transformation model estimation methods in both visual judgment and quantitative evaluation.</p>


Author(s):  
Kun Yang ◽  
Anning Pan ◽  
Yang Yang ◽  
Su Zhang ◽  
Sim Heng Ong ◽  
...  

Remote sensing image registration plays an important role in military and civilian fields, such as natural disaster damage assessment, military damage assessment and ground targets identification, etc. However, due to the ground relief variations and imaging viewpoint changes, non-rigid geometric distortion occurs between remote sensing images with different viewpoint, which further increases the difficulty of remote sensing image registration. To address the problem, we propose a multi-viewpoint remote sensing image registration method which contains the following contributions. (i) A multiple features based finite mixture model is constructed for dealing with different types of image features. (ii) Three features are combined and substituted into the mixture model to form a feature complementation, i.e., the Euclidean distance and shape context are used to measure the similarity of geometric structure, and the SIFT (scale-invariant feature transform) distance which is endowed with the intensity information is used to measure the scale space extrema. (iii) To prevent the ill-posed problem, a geometric constraint term is introduced into the L2E-based energy function for better behaving the non-rigid transformation. We evaluated the performances of the proposed method by three series of remote sensing images obtained from the unmanned aerial vehicle (UAV) and Google Earth, and compared with five state-of-the-art methods where our method shows the best alignments in most cases.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1380
Author(s):  
Sen Wang ◽  
Xiaoming Sun ◽  
Pengfei Liu ◽  
Kaige Xu ◽  
Weifeng Zhang ◽  
...  

The purpose of image registration is to find the symmetry between the reference image and the image to be registered. In order to improve the registration effect of unmanned aerial vehicle (UAV) remote sensing imagery with a special texture background, this paper proposes an improved scale-invariant feature transform (SIFT) algorithm by combining image color and exposure information based on adaptive quantization strategy (AQCE-SIFT). By using the color and exposure information of the image, this method can enhance the contrast between the textures of the image with a special texture background, which allows easier feature extraction. The algorithm descriptor was constructed through an adaptive quantization strategy, so that remote sensing images with large geometric distortion or affine changes have a higher correct matching rate during registration. The experimental results showed that the AQCE-SIFT algorithm proposed in this paper was more reasonable in the distribution of the extracted feature points compared with the traditional SIFT algorithm. In the case of 0 degree, 30 degree, and 60 degree image geometric distortion, when the remote sensing image had a texture scarcity region, the number of matching points increased by 21.3%, 45.5%, and 28.6%, respectively and the correct matching rate increased by 0%, 6.0%, and 52.4%, respectively. When the remote sensing image had a large number of similar repetitive regions of texture, the number of matching points increased by 30.4%, 30.9%, and −11.1%, respectively and the correct matching rate increased by 1.2%, 0.8%, and 20.8% respectively. When processing remote sensing images with special texture backgrounds, the AQCE-SIFT algorithm also has more advantages than the existing common algorithms such as color SIFT (CSIFT), gradient location and orientation histogram (GLOH), and speeded-up robust features (SURF) in searching for the symmetry of features between images.


2018 ◽  
Vol 10 (12) ◽  
pp. 1934 ◽  
Author(s):  
Bao-Di Liu ◽  
Wen-Yang Xie ◽  
Jie Meng ◽  
Ye Li ◽  
Yanjiang Wang

In recent years, the collaborative representation-based classification (CRC) method has achieved great success in visual recognition by directly utilizing training images as dictionary bases. However, it describes a test sample with all training samples to extract shared attributes and does not consider the representation of the test sample with the training samples in a specific class to extract the class-specific attributes. For remote-sensing images, both the shared attributes and class-specific attributes are important for classification. In this paper, we propose a hybrid collaborative representation-based classification approach. The proposed method is capable of improving the performance of classifying remote-sensing images by embedding the class-specific collaborative representation to conventional collaborative representation-based classification. Moreover, we extend the proposed method to arbitrary kernel space to explore the nonlinear characteristics hidden in remote-sensing image features to further enhance classification performance. Extensive experiments on several benchmark remote-sensing image datasets were conducted and clearly demonstrate the superior performance of our proposed algorithm to state-of-the-art approaches.


2020 ◽  
Vol 12 (18) ◽  
pp. 2937
Author(s):  
Song Cui ◽  
Miaozhong Xu ◽  
Ailong Ma ◽  
Yanfei Zhong

The nonlinear radiation distortions (NRD) among multimodal remote sensing images bring enormous challenges to image registration. The traditional feature-based registration methods commonly use the image intensity or gradient information to detect and describe the features that are sensitive to NRD. However, the nonlinear mapping of the corresponding features of the multimodal images often results in failure of the feature matching, as well as the image registration. In this paper, a modality-free multimodal remote sensing image registration method (SRIFT) is proposed for the registration of multimodal remote sensing images, which is invariant to scale, radiation, and rotation. In SRIFT, the nonlinear diffusion scale (NDS) space is first established to construct a multi-scale space. A local orientation and scale phase congruency (LOSPC) algorithm are then used so that the features of the images with NRD are mapped to establish a one-to-one correspondence, to obtain sufficiently stable key points. In the feature description stage, a rotation-invariant coordinate (RIC) system is adopted to build a descriptor, without requiring estimation of the main direction. The experiments undertaken in this study included one set of simulated data experiments and nine groups of experiments with different types of real multimodal remote sensing images with rotation and scale differences (including synthetic aperture radar (SAR)/optical, digital surface model (DSM)/optical, light detection and ranging (LiDAR) intensity/optical, near-infrared (NIR)/optical, short-wave infrared (SWIR)/optical, classification/optical, and map/optical image pairs), to test the proposed algorithm from both quantitative and qualitative aspects. The experimental results showed that the proposed method has strong robustness to NRD, being invariant to scale, radiation, and rotation, and the achieved registration precision was better than that of the state-of-the-art methods.


2021 ◽  
Vol 13 (24) ◽  
pp. 5128
Author(s):  
Xinyue Zhang ◽  
Chengcai Leng ◽  
Yameng Hong ◽  
Zhao Pei ◽  
Irene Cheng ◽  
...  

With rapid advancements in remote sensing image registration algorithms, comprehensive imaging applications are no longer limited to single-modal remote sensing images. Instead, multi-modal remote sensing (MMRS) image registration has become a research focus in recent years. However, considering multi-source, multi-temporal, and multi-spectrum input introduces significant nonlinear radiation differences in MMRS images for which researchers need to develop novel solutions. At present, comprehensive reviews and analyses of MMRS image registration methods are inadequate in related fields. Thus, this paper introduces three theoretical frameworks: namely, area-based, feature-based and deep learning-based methods. We present a brief review of traditional methods and focus on more advanced methods for MMRS image registration proposed in recent years. Our review or comprehensive analysis is intended to provide researchers in related fields with advanced understanding to achieve further breakthroughs and innovations.


2019 ◽  
Vol 85 (10) ◽  
pp. 725-736 ◽  
Author(s):  
Ming Hao ◽  
Jian Jin ◽  
Mengchao Zhou ◽  
Yi Tian ◽  
Wenzhong Shi

Image registration is an indispensable component of remote sensing applications, such as disaster monitoring, change detection, and classification. Grayscale differences and geometric distortions often occur among multisource images due to their different imaging mechanisms, thus making it difficult to acquire feature points and match corresponding points. This article proposes a scene shape similarity feature (SSSF) descriptor based on scene shape features and shape context algorithms. A new similarity measure called SSSFncc is then defined by computing the normalized correlation coefficient of the SSSF descriptors between multisource remote sensing images. Furthermore, the tie points between the reference and the sensed image are extracted via a template matching strategy. A global consistency check method is then used to remove the mismatched tie points. Finally, a piecewise linear transform model is selected to rectify the remote sensing image. The proposed SSSFncc aims to extract the scene shape similarity between multisource images. The accuracy of the proposed SSSFncc is evaluated using five pairs of experimental images from optical, synthetic aperture radar, and map data. Registration results demonstrate that the SSSFncc similarity measure is robust enough for complex nonlinear grayscale differences among multisource remote sensing images. The proposed method achieves more reliable registration outcomes compared with other popular methods.


2014 ◽  
Vol 602-605 ◽  
pp. 1864-1867
Author(s):  
Hong Yu Chen ◽  
Xiao Fei Shi ◽  
Lei Feng ◽  
Yue Long Zhang ◽  
Yan Hua Li

Misjudgment often occurred in low contrast remote sensing images, because most widely used image segmentation algorithms often have a larger threshold. To overcome this problem, a novel coastline detection algorithm is proposed. A restriction function is involved into conventional iterative selection process. According to langrage multiplier, a modified iterative selection model is formulated. This modified method utilizes the gradient of images to obtain an optimal threshold. A region grouping rule is proposed to distinguish land and sea. Experimental results show superior performance of proposed method in terms of accuracy. As an application, our method has been applied to extract the coastline of the remote sensing image with promising results.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Wenping Ma ◽  
Xiafei Fan ◽  
Yue Wu ◽  
Licheng Jiao

We introduce an area-based method for remote sensing image registration. We use orthogonal learning differential evolution algorithm to optimize the similarity metric between the reference image and the target image. Many local and global methods have been used to achieve the optimal similarity metric in the last few years. Because remote sensing images are usually influenced by large distortions and high noise, local methods will fail in some cases. For this reason, global methods are often required. The orthogonal learning (OL) strategy is efficient when searching in complex problem spaces. In addition, it can discover more useful information via orthogonal experimental design (OED). Differential evolution (DE) is a heuristic algorithm. It has shown to be efficient in solving the remote sensing image registration problem. So orthogonal learning differential evolution algorithm (OLDE) is efficient for many optimization problems. The OLDE method uses the OL strategy to guide the DE algorithm to discover more useful information. Experiments show that the OLDE method is more robust and efficient for registering remote sensing images.


Sign in / Sign up

Export Citation Format

Share Document