scholarly journals PRECISION VITICULTURE FROM MULTITEMPORAL, MULTISPECTRAL VERY HIGH RESOLUTION SATELLITE DATA

Author(s):  
Z. Kandylakis ◽  
K. Karantzalos

In order to exploit efficiently very high resolution satellite multispectral data for precision agriculture applications, validated methodologies should be established which link the observed reflectance spectra with certain crop/plant/fruit biophysical and biochemical quality parameters. To this end, based on concurrent satellite and field campaigns during the veraison period, satellite and in-situ data were collected, along with several grape samples, at specific locations during the harvesting period. These data were collected for a period of three years in two viticultural areas in Northern Greece. After the required data pre-processing, canopy reflectance observations, through the combination of several vegetation indices were correlated with the quantitative results from the grape/must analysis of grape sampling. Results appear quite promising, indicating that certain key quality parameters (like brix levels, total phenolic content, brix to total acidity, anthocyanin levels) which describe the oenological potential, phenolic composition and chromatic characteristics can be efficiently estimated from the satellite data.

Author(s):  
Z. Kandylakis ◽  
K. Karantzalos

In order to exploit efficiently very high resolution satellite multispectral data for precision agriculture applications, validated methodologies should be established which link the observed reflectance spectra with certain crop/plant/fruit biophysical and biochemical quality parameters. To this end, based on concurrent satellite and field campaigns during the veraison period, satellite and in-situ data were collected, along with several grape samples, at specific locations during the harvesting period. These data were collected for a period of three years in two viticultural areas in Northern Greece. After the required data pre-processing, canopy reflectance observations, through the combination of several vegetation indices were correlated with the quantitative results from the grape/must analysis of grape sampling. Results appear quite promising, indicating that certain key quality parameters (like brix levels, total phenolic content, brix to total acidity, anthocyanin levels) which describe the oenological potential, phenolic composition and chromatic characteristics can be efficiently estimated from the satellite data.


2021 ◽  
Vol 13 (5) ◽  
pp. 904
Author(s):  
Tomasz Pirowski ◽  
Michał Marciak ◽  
Marcin Sobiech

This paper presents a selected aspect of research conducted within the Gaugamela Project, which seeks to finally identify the location of one of the most important ancient battles: the Battle of Gaugamela (331 BCE). The aim of this study was to discover material remains of the Macedonian military camp on the Navkur Plain in Kurdish Iraq. For this purpose, three very high resolution satellite (VHRS) datasets from Pleiades and WorldView-2 were acquired and subjected to multi-variant image processing (development of different color composites, integration of multispectral and panchromatic images, use of principle component analysis transformation, use of vegetation indices). Documentation of photointerpretation was carried out through the vectorization of features/areas. Due to the character of the sought-after artifacts (remnants of a large enclosure), features were categorized into two types: linear features and areal features. As a result, 19 linear features and 2 areal features were found in the study area of the Mahad hills. However, only a few features fulfilled the expected geometric criteria (layout and size) and were subjected to field groundtruthing, which ended in negative results. It is concluded that no traces have been found that could be interpreted as remnants of an earthen enclosure capable of accommodating around 47,000 soldiers. Further research perspectives are also suggested.


2006 ◽  
Vol 23 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Huai-Min Zhang ◽  
Richard W. Reynolds ◽  
Thomas M. Smith

Abstract A method is presented to evaluate the adequacy of the recent in situ network for climate sea surface temperature (SST) analyses using both in situ and satellite observations. Satellite observations provide superior spatiotemporal coverage, but with biases; in situ data are needed to correct the satellite biases. Recent NOAA/U.S. Navy operational Advanced Very High Resolution Radiometer (AVHRR) satellite SST biases were analyzed to extract typical bias patterns and scales. Occasional biases of 2°C were found during large volcano eruptions and near the end of the satellite instruments’ lifetime. Because future biases could not be predicted, the in situ network was designed to reduce the large biases that have occurred to a required accuracy. Simulations with different buoy density were used to examine their ability to correct the satellite biases and to define the residual bias as a potential satellite bias error (PSBE). The PSBE and buoy density (BD) relationship was found to be nearly exponential, resulting in an optimal BD range of 2–3 per 10° × 10° box for efficient PSBE reduction. A BD of two buoys per 10° × 10° box reduces a 2°C maximum bias to below 0.5°C and reduces a 1°C maximum bias to about 0.3°C. The present in situ SST observing system was evaluated to define an equivalent buoy density (EBD), allowing ships to be used along with buoys according to their random errors. Seasonally averaged monthly EBD maps were computed to determine where additional buoys are needed for future deployments. Additionally, a PSBE was computed from the present EBD to assess the in situ system’s adequacy to remove potential future satellite biases.


2011 ◽  
Vol 4 (sup1) ◽  
pp. 91-106 ◽  
Author(s):  
T. Kemper ◽  
M. Jenerowicz ◽  
L. Gueguen ◽  
D. Poli ◽  
P. Soille

2017 ◽  
Vol 43 (3) ◽  
pp. 1486
Author(s):  
K. Nikolakopoulos ◽  
P. Tsompos

In the frame of the “Urban Geology” project of IGME a lot of remote sensing applications were carried out: DSMs creation and accuracy verification, orthorectification of very high resolution satellite data, data fusion, multitemporal and multisensor image analysis, land cover and land use change detection e.t.c. The applications that took place in the pilot case of Nafplio are presented in this study


Sign in / Sign up

Export Citation Format

Share Document