scholarly journals Recovery Processes in a Large Offshore Wind Farm

2021 ◽  
Author(s):  
Tanvi Gupta ◽  
Somnath Baidya Roy

Abstract. Wind turbines in a wind farm extract energy from the atmospheric flow and convert it into electricity, resulting in a localized momentum deficit in the wake that reduces energy availability for downwind turbines. Atmospheric momentum convergence from above, below and sides into the wakes replenish the lost momentum, at least partially, so that turbines deep inside a wind farm can continue to function. In this study, we explore recovery processes in a hypothetical offshore wind farm with particular emphasis on comparing the spatial patterns and magnitudes of horizontal and vertical recovery processes and understanding the role of mesoscale processes in momentum recovery in wind farms. For this purpose, we use the Weather Research and Forecasting (WRF) model, a state-of-the-art mesoscale model equipped with a wind turbine parameterization, to simulate a hypothetical large offshore wind farm with different wind turbine spacings under realistic initial and boundary conditions. Results show that vertical turbulent transport of momentum from aloft is the main contributor to recovery in wind farms except in cases with strong background winds and high inter-turbine spacing where horizontal advective momentum transport can also contribute equally. Vertical recovery shows a systematic dependence on wind speed and wind farm density that can be quantified using low-order empirical equations. Wind farms significantly alter the mesoscale flow patterns, especially for densely packed wind farms under high wind speed conditions. In these cases, the mesoscale circulations created by the wind farms can transport high momentum air from aloft into the atmospheric boundary layer (ABL) and thus aid in recovery in wind farms. This is a novel study that is one of the first to look at wind farm replenishment processes under realistic meteorological conditions including the role of mesoscale processes. Overall, this study significantly advances our understanding of recovery processes in wind farms and wind farm-ABL interactions.

2021 ◽  
Vol 6 (5) ◽  
pp. 1089-1106
Author(s):  
Tanvi Gupta ◽  
Somnath Baidya Roy

Abstract. Wind turbines in a wind farm extract energy from the atmospheric flow and convert it into electricity, resulting in a localized momentum deficit in the wake that reduces energy availability for downwind turbines. Atmospheric momentum convergence from above, below, and the sides into the wakes replenishes the lost momentum, at least partially, so that turbines deep inside a wind farm can continue to function. In this study, we explore recovery processes in a hypothetical offshore wind farm with particular emphasis on comparing the spatial patterns and magnitudes of horizontal- and vertical-recovery processes and understanding the role of mesoscale processes in momentum recovery in wind farms. For this purpose, we use the Weather Research and Forecasting (WRF) model, a state-of-the-art mesoscale model equipped with a wind turbine parameterization, to simulate a hypothetical large offshore wind farm with different wind turbine spacings under realistic initial and boundary conditions. Different inter-turbine spacings range from a densely packed wind farm (case I: low inter-turbine distance of 0.5 km ∼ 5 rotor diameter) to a sparsely packed wind farm (case III: high inter-turbine distance of 2 km ∼ 20 rotor diameter). In this study, apart from the inter-turbine spacings, we also explored the role of different ranges of background wind speeds over which the wind turbines operate, ranging from a low wind speed range of 3–11.75 m s−1 (case A) to a high wind speed range of 11–18 m s−1 (case C). Results show that vertical turbulent transport of momentum from aloft is the main contributor to recovery in wind farms except in cases with high-wind-speed range and sparsely packed wind farms, where horizontal advective momentum transport can also contribute equally. Vertical recovery shows a systematic dependence on wind speed and wind farm density that is quantified using low-order empirical equations. Wind farms significantly alter the mesoscale flow patterns, especially for densely packed wind farms under high-wind-speed conditions. In these cases, the mesoscale circulations created by the wind farms can transport high-momentum air from aloft into the atmospheric boundary layer (ABL) and thus aid in recovery in wind farms. To the best of our knowledge, this is one of the first studies to look at wind farm replenishment processes under realistic meteorological conditions including the role of mesoscale processes. Overall, this study advances our understanding of recovery processes in wind farms and wind farm–ABL interactions.


2021 ◽  
Author(s):  
Tanvi Gupta ◽  
Somnath Baidya Roy

<p>Wind turbines in a wind farm extract energy from the atmospheric flow and convert it into electricity, resulting in a localized momentum deficit in the wake that reduces energy availability for downwind turbines. Atmospheric momentum convergence from above, below, and sides into the wakes replenish the lost momentum, at least partially, so that turbines deep inside a wind farm can continue to function. In this study, we explore recovery processes in hypothetical offshore wind farms with particular emphasis on comparing the spatial patterns and magnitudes of horizontal and vertical recovery processes and understanding the role of mesoscale phenomena like sea breezes in momentum recovery in wind farms.</p><p>For this study, we use the Weather Research and Forecasting (WRF) model, a state-of-the-art mesoscale model equipped with a wind turbine parameterization, to simulate deep offshore and coastal wind farms with different wind turbine spacings under realistic initial and boundary conditions. The wind farms consist of 10000 turbines rated 3 MW spread over a 50 km x 50 km area. We conduct experiments with various background conditions, including low wind, high wind, and sea breeze cases identified using Borne’s method.</p><p>Results show that for deep offshore wind farms, power generation peaks at the upwind edge and monotonically decreases downwind into the interior due to cumulative wake effects of multiple rows of turbines. Vertical turbulent transport of momentum from aloft is the main contributor to recovery except in cases with strong background winds and high inter-turbine spacing where horizontal advective momentum transport can also contribute equally. Coastal wind farms behave similarly in the absence of sea-breezes.  However, under sea breeze conditions, the power production is high at the upwind edge and decreases thereafter but starts to increase again towards the downwind edge of the wind farm because of the sea breeze. The results further show that the contribution of horizontal (vertical) recovery in case of sea breeze conditions increases (decreases) to around 14% (86%) as compared to the non-sea breeze conditions where the horizontal (vertical) recovery contributes 9% (90%) to the momentum recovery in the wind farms. Vertical recovery shows a systematic dependence on wind farm density and wind speed. This relationship can be quantified using low-order empirical equations that can perhaps be used to develop parameterizations for replenishment in linear wake models. Overall, this study is likely to significantly advance our understanding of recovery processes in wind farms and wind farm-ABL interactions.</p>


2016 ◽  
Author(s):  
Amy Stidworthy ◽  
David Carruthers

Abstract. A new model, FLOWSTAR-Energy, has been developed for the practical calculation of wind farm energy production. It includes a semi-analytic model for airflow over complex surfaces (FLOWSTAR) and a wind turbine wake model that simulates wake-wake interaction by exploiting some similarities between the decay of a wind turbine wake and the dispersion of plume of passive gas emitted from an elevated source. Additional turbulence due to the wind shear at the wake edge is included and the assumption is made that wind turbines are only affected by wakes from upstream wind turbines. The model takes account of the structure of the atmospheric boundary layer, which means that the effect of atmospheric stability is included. A marine boundary layer scheme is also included to enable offshore as well as onshore sites to be modelled. FLOWSTAR-Energy has been used to model three different wind farms and the predicted energy output compared with measured data. Maps of wind speed and turbulence have also been calculated for two of the wind farms. The Tjaæreborg wind farm is an onshore site consisting of a single 2 MW wind turbine, the NoordZee offshore wind farm consists of 36 V90 VESTAS 3 MW turbines and the Nysted offshore wind farm consists of 72 Bonus 2.3 MW turbines. The NoordZee and Nysted measurement datasets include stability distribution data, which was included in the modelling. Of the two offshore wind farm datasets, the Noordzee dataset focuses on a single 5-degree wind direction sector and therefore only represents a limited number of measurements (1,284); whereas the Nysted dataset captures data for seven 5-degree wind direction sectors and represents a larger number of measurements (84,363). The best agreement between modelled and measured data was obtained with the Nysted dataset, with high correlation (0.98 or above) and low normalised mean square error (0.007 or below) for all three flow cases. The results from Tjæreborg show that the model replicates the Gaussian shape of the wake deficit two turbine diameters downstream of the turbine, but the lack of stability information in this dataset makes it difficult to draw conclusions about model performance. One of the key strengths of FLOWSTAR-Energy is its ability to model the effects of complex terrain on the airflow. However, although the airflow model has been previously compared extensively with flow data, it has so far not been used in detail to predict energy yields from wind farms in complex terrain. This will be the subject of a further validation study for FLOWSTAR-Energy.


2021 ◽  
Author(s):  
Morteza Bahadori ◽  
Hassan Ghassemi

Abstract In recent years, as more offshore wind farms have been constructed, the possibility of integrating various offshore renewable technologies is increased. Using offshore wind and solar power resources as a hybrid system provides several advantages including optimized marine space utilization, reduced maintenance and operation costs, and relieving wind variability on output power. In this research, both offshore wind and solar resources are analyzed based on accurate data through a case study in Shark Bay (Australia), where bathymetric information confirms using offshore bottom-fixed wind turbine regarding the depth of water. Also, the power production of the hybrid system of co-located bottom-fixed wind turbine and floating photovoltaic are investigated with the technical characteristics of commercial mono-pile wind turbine and photovoltaic panels. Despite the offshore wind, the solar energy output has negligible variation across the case study area, therefore using the solar platform in deep water is not an efficient option. It is demonstrated that the floating solar has a power production rate nearly six times more than a typical offshore wind farm with the same occupied area. Also, output energy and surface power density of the hybrid offshore windsolar system are improved significantly compared to a standalone offshore wind farm. The benefits of offshore wind and solar synergies augment the efficiency of current offshore wind farms throughout the world.


2018 ◽  
Author(s):  
Thomas Duc ◽  
Olivier Coupiac ◽  
Nicolas Girard ◽  
Gregor Giebel ◽  
Tuhfe Göçmen

Abstract. In this paper, a new calculation procedure to improve the accuracy of the Jensen wake model for operating wind farms is proposed. In this procedure the wake decay constant is updated locally at each wind turbine based on the turbulence intensity measurement provided by the nacelle anemometer. This procedure was tested against experimental data at onshore wind farm La Sole du Moulin Vieux (SMV) in France and the offshore wind farm Horns Rev-I in Denmark. Results indicate that the wake deficit at each wind turbine is described more accurately than when using the original model, reducing the error from 15–20 % to approximately 5 %. Furthermore, this new model properly calibrated for the SMV wind farm is then used for coordinated control purposes. Assuming an axial induction control strategy, and following a model predictive approach, new power settings leading to an increased overall power production of the farm are derived. Power gains found are in the order of 2.5 % for a two wind turbine case with close spacing and 1 to 1.5 % for a row of five wind turbines with a larger spacing. Finally, the uncertainty of the updated Jensen model is quantified considering the model inputs. When checked against the predicted power gain, the uncertainty of the model estimations is seen to be excessive, reaching approximately 4 %, which indicates the difficulty of field observations for such a gain. Nevertheless, the optimized settings are to be implemented during a field test campaign at SMV wind farm in scope of the national project SMARTEOLE.


2019 ◽  
Vol 9 (6) ◽  
pp. 1184 ◽  
Author(s):  
Kuichao Ma ◽  
Jiangsheng Zhu ◽  
Mohsen Soltani ◽  
Amin Hajizadeh ◽  
Zhe Chen

For offshore wind farms, the power loss caused by the wake effect is large due to the large capacity of the wind turbine. At the same time, the operating environment of the offshore wind farm is very harsh, and the cost of maintenance is higher than that of the onshore wind farm. Therefore, it is worthwhile to study through reasonable control how to reduce the wake loss of the wind farm and minimize the losses caused by the fault. In this paper, the Particle Swarm Optimization (PSO) algorithm is used to optimize the active power dispatch of wind farms under generator cooling system faults. The optimization objectives include avoiding the further deterioration of the generator fault, reducing unnecessary power loss of the faulty wind turbine, tracking the power demand from the Transmission System Operator (TSO), and reducing the power fluctuation caused by the PSO algorithm. The proposed optimal power dispatch strategy was compared with the two generally-used fault-handling methods and the proportional dispatch strategy in simulation. The result shows that the proposed strategy can improve the power generation capacity of the wind farm and achieve an efficient trade-off between power generation and fault protection.


2020 ◽  
Vol 10 (2) ◽  
pp. 257-268
Author(s):  
Mohammad Mushir Riaz ◽  
Badrul Hasan Khan

Despite India's great potential for offshore wind energy development, no offshore wind farm exists in the country. This study aims to plan a large scale offshore wind farm in the south coastal region of India. Seven potential sites were selected for the wind resource assessment study to choose the most suitable site for offshore wind farm development. An optimally matched wind turbine was also selected for each site using the respective power curves and wind speed characteristics. Weibull shape and scale parameters were estimated using WAsP, openwind, maximum likelihood (MLH), and least square regression (LSR) algorithms. The maximum energy-carrying wind speed and the most frequent wind speed were determined using these algorithmic methods. The correlation coefficient (R2) indicated the efficiency of these methods and showed that all four methods represented wind data at all sites accurately; however, openwind was slightly better than MLH, followed by LSR and WAsP methods. The coastal site, Zone-B with RE power 6.2 M152 wind turbine, was found to be the most suitable site for developing an offshore wind farm. Furthermore, the financial analysis that included preventive maintenance cost and carbon emission analysis was also done. Results show that it is feasible to develop a 430 MW wind farm in the region, zone B, by installing seventy RE power 6.2 M152 offshore wind turbines. The proposed wind farm would provide a unit price of Rs. 6.84 per kWh with a payback period of 5.9 years and, therefore, would be substantially profitable.


2017 ◽  
Vol 2 (2) ◽  
pp. 603-614 ◽  
Author(s):  
Lukas Vollmer ◽  
Gerald Steinfeld ◽  
Martin Kühn

Abstract. The estimation of the cost of energy of offshore wind farms has a high uncertainty, which is partly due to the lacking accuracy of information on wind conditions and wake losses inside of the farm. Wake models that aim to reduce the uncertainty by modeling the wake interaction of turbines for various wind conditions need to be validated with measurement data before they can be considered as a reliable estimator. In this paper a methodology that enables a direct comparison of modeled with measured flow data is evaluated. To create the simulation data, a model chain including a mesoscale model, a large-eddy-simulation (LES) model and a wind turbine model is used. Different setups are compared to assess the capability of the method to reproduce the wind conditions at the hub height of current offshore wind turbines. The 2-day-long simulation of the ambient wind conditions and the wake simulation generally show good agreements with data from a met mast and lidar measurements, respectively. Wind fluctuations due to boundary layer turbulence and synoptic-scale motions are resolved with a lower representation of mesoscale fluctuations. Advanced metrics to describe the wake shape and development are derived from simulations and measurements but a quantitative comparison proves to be difficult due to the scarcity and the low sampling rate of the available measurement data. Due to the implementation of changing synoptic wind conditions in the LES, the methodology could also be beneficial for case studies of wind farm performance or wind farm control.


Author(s):  
Jenny M. V. Trumars ◽  
Johan O. Jonsson ◽  
Lars Bergdahl

The aim of this work is to evaluate data from the offshore wind farm Bockstigen in order to study the effect of directional spreading of waves and wind wave misalignment on the response of the structure. The development of offshore wind energy has led to wind farms at sites with water depths ranging from approximately 6 to 30 m. The change of location from land to sea changes the design requirements of wind energy converters. In addition to wind loads, the wave load on the structure has to be taken into account. Since a wind turbine is highly damped in the inline direction as compared to the crosswise direction, the effect of directional spreading of waves on the response is studied. Depending on the dynamics of the structure the crosswise force could give a larger response than the corresponding inline force. In this study the influence of the directional spreading of the waves on the response is not clear, however the effect of wind and wave misalignment is clear.


Sign in / Sign up

Export Citation Format

Share Document