scholarly journals Unsteady Heat Transfer from an Equilateral Triangular Cylinder in the Unconfined Flow Regime

2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Amit Dhiman ◽  
Radhe Shyam

Effects of Reynolds number on the heat transfer characteristics of a long (heated) equilateral triangular cylinder are investigated for the range of conditions Re = 50–150 (in the steps of 10) and Prandtl number = 0.71 (air) in the unconfined unsteady cross-flow regime. In order to simulate the present situation, the computational grid is created by using commercial grid generator GAMBIT and the numerical computations are carried out by using FLUENT (6.3). The SIMPLE method is used to solve continuity, Navier-Stokes and energy equations along with the appropriate boundary conditions. The second order upwind scheme is used to discretize the convective terms, while the central difference scheme is used to discretize the diffusive terms in the governing equations. The present results are in an excellent agreement with the literature values. The temperature isotherms and temporal history of Nusselt number are presented in detail. The local as well as time-averaged Nusselt numbers are calculated. The time-averaged Nusselt number increases with increasing Reynolds number for the fixed value of the Prandtl number. Finally, the present numerical results are used to develop the simple heat transfer correlation for the range of conditions covered here.

2019 ◽  
Vol 30 (7) ◽  
pp. 3827-3842
Author(s):  
Samer Ali ◽  
Zein Alabidin Shami ◽  
Ali Badran ◽  
Charbel Habchi

Purpose In this paper, self-sustained second mode oscillations of flexible vortex generator (FVG) are produced to enhance the heat transfer in two-dimensional laminar flow regime. The purpose of this study is to determine the critical Reynolds number at which FVG becomes more efficient than rigid vortex generators (RVGs). Design/methodology/approach Ten cases were studied with different Reynolds numbers varying from 200 to 2,000. The Nusselt number and friction coefficients of the FVG cases are compared to those of RVG and empty channel at the same Reynolds numbers. Findings For Reynolds numbers higher than 800, the FVG oscillates in the second mode causing a significant increase in the velocity gradients generating unsteady coherent flow structures. The highest performance was obtained at the maximum Reynolds number for which the global Nusselt number is improved by 35.3 and 41.4 per cent with respect to empty channel and rigid configuration, respectively. Moreover, the thermal enhancement factor corresponding to FVG is 72 per cent higher than that of RVG. Practical implications The results obtained here can help in the design of novel multifunctional heat exchangers/reactors by using flexible tabs and inserts instead of rigid ones. Originality/value The originality of this paper is the use of second mode oscillations of FVG to enhance heat transfer in laminar flow regime.


2021 ◽  
Author(s):  
Matthew Searle ◽  
Arnab Roy ◽  
James Black ◽  
Doug Straub ◽  
Sridharan Ramesh

Abstract In this paper, experimental and numerical investigations of three variants of internal cooling configurations — dimples only, ribs only and ribs with dimples have been explored at process conditions (96°C and 207bar) with sCO2 as the coolant. The designs were chosen based on a review of advanced internal cooling features typically used for air-breathing gas turbines. The experimental study described in this paper utilizes additively manufactured square channels with the cooling features over a range of Reynolds number from 80,000 to 250,000. Nusselt number is calculated in the experiments utilizing the Wilson Plot method and three heat transfer characteristics — augmentation in Nusselt number, friction factor and overall Thermal Performance Factor (TPF) are reported. To explore the effect of surface roughness introduced due to additive manufacturing, two baseline channel flow cases are considered — a conventional smooth tube and an additively manufactured square tube. A companion computational fluid dynamics (CFD) simulation is also performed for the corresponding cooling configurations reported in the experiments using the Reynolds Averaged Navier Stokes (RANS) based turbulence model. Both experimental and computational results show increasing Nusselt number augmentation as higher Reynolds numbers are approached, whereas prior work on internal cooling of air-breathing gas turbines predict a decay in the heat transfer enhancement as Reynolds number increases. Comparing cooling features, it is observed that the “ribs only” and “ribs with dimples” configurations exhibit higher Nusselt number augmentation at all Reynolds numbers compared to the “dimples only” and the “no features” configurations. However, the frictional losses are almost an order of magnitude higher in presence of ribs.


Author(s):  
S.A.M. Said ◽  
M.A. Habib ◽  
M.O. Iqbal

A numerical investigation aimed at understanding the flow and heat transfer characteristics of pulsating turbulent flow in an abrupt pipe expansion was carried out. The flow patterns are classified by four parameters; the Reynolds number, the Prandtl number, the abrupt expansion ratio and the pulsation frequency. The influence of these parameters on the flow was studied in the range 104<Re<5×104, 0.7<Pr<7.0, 0.2<d/D<0.6 and 5<f<35. It was found that the influence of pulsation on the mean time‐averaged Nusselt number is insignificant (around 10 per cent increase) for fluids having a Prandtl number less than unity. This effect is appreciable (around 30 per cent increase) for fluids having Prandtl number greater than unity. For all pulsation frequencies, the variation in the mean time‐averaged Nusselt number, maximum Nusselt number and its location with Reynolds number and diameter ratio exhibit similar characteristics to steady flows.


1985 ◽  
Vol 107 (2) ◽  
pp. 334-337 ◽  
Author(s):  
O. A. Arnas ◽  
M. A. Ebadian

Convective heat transfer for steady laminar flow between two concentric circular pipes with walls heated and/or cooled independently and subjected to uniform heat generation is presented in analytical closed form utilizing the linearized Navier-Stokes and energy equations. The flow field is hydrodynamically and thermally fully developed. The effect of heat generation is depicted in Fig. 1 where the ratio of the Nusselt number with heat generation to without heat generation is plotted against the radius ratio, the core size ω. It is seen that heat generation may have positive as well as negative effect on the Nusselt number.


2000 ◽  
Vol 123 (2) ◽  
pp. 347-358 ◽  
Author(s):  
P. Bagchi ◽  
M. Y. Ha ◽  
S. Balachandar

Direct numerical solution for flow and heat transfer past a sphere in a uniform flow is obtained using an accurate and efficient Fourier-Chebyshev spectral collocation method for Reynolds numbers up to 500. We investigate the flow and temperature fields over a range of Reynolds numbers, showing steady and axisymmetric flow when the Reynolds number is less than 210, steady and nonaxisymmetric flow without vortex shedding when the Reynolds number is between 210 and 270, and unsteady three-dimensional flow with vortex shedding when the Reynolds number is above 270. Results from three-dimensional simulation are compared with the corresponding axisymmetric simulations for Re>210 in order to see the effect of unsteadiness and three-dimensionality on heat transfer past a sphere. The local Nusselt number distribution obtained from the 3D simulation shows big differences in the wake region compared with axisymmetric one, when there exists strong vortex shedding in the wake. But the differences in surface-average Nusselt number between axisymmetric and three-dimensional simulations are small owing to the smaller surface area associated with the base region. The shedding process is observed to be dominantly one-sided and as a result axisymmetry of the surface heat transfer is broken even after a time-average. The one-sided shedding also results in a time-averaged mean lift force on the sphere.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Emad J. Elnajjar ◽  
Qasem M. Al-Mdallal ◽  
Fathi M. Allan

The present work studies the unsteady, viscous, and incompressible laminar flow and heat transfer over a shrinking permeable cylinder. The unsteady nonlinear Navier–Stokes and energy equations are reduced, using similarity transformations, to a system of nonlinear ordinary differential equations. The boundary conditions associated with the governing equations are the time dependent surface temperature and flow conditions. The method of solution is based on a combination of the implicit Runge–Kutta method and the shooting method. The present study predicts two solutions for both the flow and heat transfer fields, and a unique solution at a specific critical unsteadiness parameter. An analysis of the results, for a specific suction parameter, suggests that the corresponding unique unsteadiness parameter does not depend on the Prandtl number. However, the unique rate of heat transfer is increasing as the Prandtl number increases. In addition, our results confirm that the unique value of heat transfer rate increases as the suction parameter increases, regardless the value of the Prandtl number.


Author(s):  
A. K. Saha ◽  
Sumanta Acharya

Large Eddy Simulations (LES) and Unsteady Reynolds Averaged Navier-Stokes (URANS) simulations have been performed for flow and heat transfer in a rotating ribbed duct. The ribs are oriented normal to the flow and arranged in a staggered configuration on the leading and trailing surfaces. The LES results are based on a higher-order accurate finite difference scheme with a dynamic Smagorinsky model for the subgrid stresses. The URANS procedure utilizes a two equation k-ε model for the turbulent stresses. Both Coriolis and centrifugal buoyancy effects are included in the simulations. The URANS computations have been carried out for a wide range of Reynolds number (Re = 12,500–100,000), rotation number (Ro = 0–0.5) and density ratio (Δρ/ρ = 0–0.5), while LES results are reported for a single Reynolds number of 12,500 without and with rotation (Ro = 0.12, Δρ/ρ = 0.13). Comparison is made between the LES and URANS results, and the effects of various parameters on the flow field and surface heat transfer are explored. The LES results clearly reflect the importance of coherent structures in the flow, and the unsteady dynamics associated with these structures. The heat transfer results from both LES and URANS are found to be in reasonable agreement with measurements. LES is found to give higher heat transfer predictions (5–10% higher) than URANS. The Nusselt number ratio (Nu/Nu0) is found to decrease with increasing Reynolds number on all walls, while they increase with the density ratio along the leading and trailing walls. The Nusselt number ratio on the trailing and side walls also increases with rotation. However, the leading wall Nusselt number ratio shows an initial decrease with rotation (till Ro = 0.12) due to the stabilizing effect of rotation on the leading wall. However, beyond Ro = 0.12, the Nusselt number ratio increases with rotation due to the importance of centrifugal-buoyancy at high rotation.


2009 ◽  
Vol 14 (2) ◽  
pp. 263-279
Author(s):  
L.-S. Yao

The principle of multiple solutions of the Navier-Stokes and energy equations discussed in this paper is not directed at any particular problems in fluid dynamics and heat transfer, or at any specific applications. The non-uniqueness principle states that the Reynolds number, above its critical value, is insufficient to uniquely determine a flow field for a given geometry, or for similar geometries. It is a generic principle for all fluid flows and its transportation properties, but is not well known. It compliments the current popular bifurcation theories by the fact that multiple solutions can exist on each stable bifurcation branch.


2012 ◽  
Vol 16 (1) ◽  
pp. 79-91 ◽  
Author(s):  
Varun Sharma ◽  
Kumar Dhiman

In this work, effects of Prandtl number on the heat transfer characteristics of an unconfined rotating circular cylinder are investigated for varying rotation rate (? = 0 - 5) in the Reynolds number range 1 - 35 and Prandtl numbers range 0.7 - 100 in the steady flow regime. The numerical calculations are carried out by using a finite volume method based commercial CFD solver FLUENT. The isotherm patterns are presented for varying values of Prandtl number and rotation rate in the steady regime. The variation of the local and the average Nusselt numbers with Reynolds number, Prandtl number and rotation rate are presented for the above range of conditions. The average Nusselt number is found to decrease with increasing value of the rotation rate for the fixed value of the Reynolds and Prandtl numbers. With increasing value of the Prandtl number, the average Nusselt number increases for the fixed value of the rotation rate and the Reynolds number; however, the larger values of the Prandtl numbers show a large reduction in the value of the average Nusselt number with increasing rotation rate.


Sign in / Sign up

Export Citation Format

Share Document