scholarly journals An attempt at describing the growth of live organisms by means of a difference-differential equation

2014 ◽  
Vol 55 (4) ◽  
pp. 533-538
Author(s):  
Andrzej Gregorczyk

An attempt is made to create a formal growth model based on a difference-differential equation. The solution of this type of equation is a function of a continuous variable and of a variable assuming natural values. By using the Laplace transformation in respect to time and then solving a specific linear difference equation, a final relation showing the dependence of the amount of dry matter on a natural number and time -- w<sub>n</sub>(t), was obtained. This function can be, in a certain sense, a generalization of the known Gregory-Naidenov monomolecular function. For n=1 the function w<sub>n</sub>(t) transforms into a relation similar to the Mitscherlich equation, for n>1, its graphs have a characteristic sigmoid shape. Numerical methods are necessary to work out specific forms of the function w<sub>n</sub>(t).

Author(s):  
Moustafa El-Shahed

The objective of this paper is to solve the equation of motion of semilunar heart valve vibrations. The vibrations of the closed semilunar valves were modeled with a Caputo hactional derivative of order α. With the help of Laplace transformation, closed-form solution is obtained for the equation of motion in terms of Mittag-Leffler function. An alternative Method for Semi-differential equation, when α = 0.5, is examined using MATHEMATICA. The simplicity of these solutions makes them ideal for testing the accuracy of numerical methods. This solution can be of some interest for a better fit of experimental data.


1932 ◽  
Vol 28 (2) ◽  
pp. 234-243 ◽  
Author(s):  
J. B. S. Haldane

1. Among the equations arising in the theory of natural selection is the finite difference equationwhere k is a constant which may have any value between 1 and − ∞ inclusive, but is often small. Its solution is discussed in the accompanying paper(1). It is a particular case of the equationwhere Φ(x) is a known one-valued function of x. When k is small this may obviously be solved approximately by treating it as a differential equationwhence


Author(s):  
Mostafijur Rahaman ◽  
Sankar Prasad Mondal ◽  
Ebrahem A. Algehyne ◽  
Amiya Biswas ◽  
Shariful Alam

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Stevo Stević ◽  
Bratislav Iričanin ◽  
Witold Kosmala ◽  
Zdeněk Šmarda

Abstract It is known that every solution to the second-order difference equation $x_{n}=x_{n-1}+x_{n-2}=0$ x n = x n − 1 + x n − 2 = 0 , $n\ge 2$ n ≥ 2 , can be written in the following form $x_{n}=x_{0}f_{n-1}+x_{1}f_{n}$ x n = x 0 f n − 1 + x 1 f n , where $f_{n}$ f n is the Fibonacci sequence. Here we find all the homogeneous linear difference equations with constant coefficients of any order whose general solution have a representation of a related form. We also present an interesting elementary procedure for finding a representation of general solution to any homogeneous linear difference equation with constant coefficients in terms of the coefficients of the equation, initial values, and an extension of the Fibonacci sequence. This is done for the case when all the roots of the characteristic polynomial associated with the equation are mutually different, and then it is shown that such obtained representation also holds in other cases. It is also shown that during application of the procedure the extension of the Fibonacci sequence appears naturally.


2008 ◽  
Vol 144 (4) ◽  
pp. 867-919 ◽  
Author(s):  
Andrea Pulita

AbstractWe develop the theory of p-adic confluence of q-difference equations. The main result is the fact that, in the p-adic framework, a function is a (Taylor) solution of a differential equation if and only if it is a solution of a q-difference equation. This fact implies an equivalence, called confluence, between the category of differential equations and those of q-difference equations. We develop this theory by introducing a category of sheaves on the disk D−(1,1), for which the stalk at 1 is a differential equation, the stalk at q isa q-difference equation if q is not a root of unity, and the stalk at a root of unity ξ is a mixed object, formed by a differential equation and an action of σξ.


2017 ◽  
Vol 23 (2) ◽  
Author(s):  
Muhad H. Abregov ◽  
Vladimir Z. Kanchukoev ◽  
Maryana A. Shardanova

AbstractThis work is devoted to the numerical methods for solving the first-kind boundary value problem for a linear second-order differential equation with a deviating argument in minor terms. The sufficient conditions of the one-valued solvability are established, and the a priori estimate of the solution is obtained. For the numerical solution, the problem studied is reduced to the equivalent boundary value problem for an ordinary linear differential equation of fourth order, for which the finite-difference scheme of second-order approximation was built. The convergence of this scheme to the exact solution is shown under certain conditions of the solvability of the initial problem. To solve the finite-difference problem, the method of five-point marching of schemes is used.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
S. Hristova ◽  
A. Golev ◽  
K. Stefanova

The object of investigation of the paper is a special type of difference equations containing the maximum value of the unknown function over a past time interval. These equations are adequate models of real processes which present state depends significantly on their maximal value over a past time interval. An algorithm based on the quasilinearization method is suggested to solve approximately the initial value problem for the given difference equation. Every successive approximation of the unknown solution is the unique solution of an appropriately constructed initial value problem for a linear difference equation with “maxima,” and a formula for its explicit form is given. Also, each approximation is a lower/upper solution of the given mixed problem. It is proved the quadratic convergence of the successive approximations. The suggested algorithm is realized as a computer program, and it is applied to an example, illustrating the advantages of the suggested scheme.


Sign in / Sign up

Export Citation Format

Share Document