AbstractSynchrotron X-ray diffraction (XRD) is a powerful technique to study in situ and in real-time the structural and kinetic processes of pressure-induced phase transformations. This paper presents the experimental set-up developed at beamline ID27 of the ESRF to perform time-resolved angle dispersive XRD in the Paris-Edinburgh cell. It provides a practical guide for the acquisition of isobaric-isothermal kinetic data and the construction of transformation-time plots. The interpretation of experimental data in terms of reaction mechanisms and transformation rates is supported by an overview of the kinetic theory of solid-solid transformations, with each step of data processing illustrated by experimental results of relevance to the geosciences. Reaction kinetics may be affected by several factors such as the sample microstructure, impurities or differential stress. Further high-pressure kinetic studies should investigate the influence of such processes, in order to acquire kinetic information more akin to natural or technological processes.