platinum nanoparticles
Recently Published Documents


TOTAL DOCUMENTS

2306
(FIVE YEARS 475)

H-INDEX

109
(FIVE YEARS 14)

Author(s):  
Yuta Tsubonouchi ◽  
Masashi Kajita ◽  
Taichi Hayasaka ◽  
Hamada S. A. Mandour ◽  
Mohamed R Berber ◽  
...  

Platinum nanoparticles (PAA-Pt) stabilized by polyacrylic acid (PAA) of a polymeric stabilizer were adsorbed on an indium tin oxide (ITO) surface from their colloidal solution due to the chemical adsorption...


2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Rudy Trejo-Tzab ◽  
Alejandro Avila-Ortega ◽  
Patricia Quintana-Owen ◽  
Ricardo Rangel ◽  
Mayra Angélica Álvarez-Lemus

In the present work, N-TiO2−x/Pt was synthesized using a homemade nitrogen plasma (AC) discharge system. The overall procedure use of low-power nitrogen plasma (100 watts) with 1 and 2 h of plasma discharge to successfully impregnate platinum nanoparticles on P25 titanium dioxide. The obtained samples were characterized using X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HRTEM). The results reveal the incorporation of metallic Pt up to 2.9% on the surface of TiO2 by increasing the duration of plasma discharge by up to two hours with a constant power of 100 watts. Likewise, the incorporation of nitrogen atoms into a lattice crystal was also favored, confirming a direct relationship between the amount of Pt and nitrogen atoms introduced in TiO2 as a function of the duration of plasma treatment. By characterizing nanoparticles loaded on a N-TiO2−x/Pt surface, we show that joined platinum nanoparticles have two different patterns, and the boundary between these two regions coalesces. The results demonstrate that the use of nitrogen plasma to impregnate platinum nanoparticles on the surface of TiO2 to obtain N-TiO2−x/Pt allows wide and relevant physics and chemistry applications.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 73
Author(s):  
Lorena-Cristina Balint ◽  
Iosif Hulka ◽  
Andrea Kellenberger

Platinum-based materials are widely known as the most utilized and advanced catalysts for hydrogen evolution reaction. For this reason, several studies have reported alternative methods of incorporating this metal into more economical electrodes with a carbon-based support material. Herein, we report on the performance of pencil graphite electrodes decorated with electrochemically deposited platinum nanoparticles as efficient electrocatalysts for hydrogen evolution reaction. The electrodeposition of platinum was performed via pulsed current electrodeposition and the effect of current density on the electrocatalytic activity was investigated. The obtained electrodes were characterized using cyclic voltammetry, while the electrocatalytic activity was assessed through linear sweep voltammetry. Field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy were utilised to gain an insight into surface morphology and chemical analysis of platinum nanoparticles. The best performing electrocatalyst, at both low and high current densities, was characterized by the highest exchange current density of 1.98 mA cm−2 and an ultralow overpotential of 43 mV at a current density of 10 mA cm−2. The results show that, at low current densities, performances closest to that of platinum can be achieved even with an ultralow loading of 50 µg cm−2 Pt.


ChemCatChem ◽  
2021 ◽  
Author(s):  
Simon Doherty ◽  
Julian G Knight ◽  
Hussam Y Alharbi ◽  
Reece Paetrson ◽  
Corinne Wills ◽  
...  

2021 ◽  
Author(s):  
LONG LUO ◽  
Xin Geng ◽  
Shuwei Li ◽  
Jaeyoung Heo ◽  
Yi Peng ◽  
...  

We report a facile method of synthesizing grain-boundary(GB)-rich platinum nanoparticle assembly. GBs are formed between platinum nanoparticles during their random collision and attachment in solution driven by water electrolysis. The GB-rich nanoparticle assembly exhibits ~400-fold higher catalytic hydrogen oxidation rate than platinum nanoparticles before assembly, enabling catalytic hydrogen sensing at room temperature without external heating. Our sensor also demonstrates fast response/recovery (~7 s at >1% H2), nearly no signal variation during a 280-hour-long stability test, and high selectivity toward hydrogen over 36 interference gases. Furthermore, this sensor can be easily fabricated from commercial thermometers at a low cost (< $5 per unit). Theoretical calculation results reveal that the high performance of GB-rich platinum nanoparticle assembly arises from tensile strain at the GBs.


2021 ◽  
Vol 15 ◽  
Author(s):  
Maurizio Gulino ◽  
Sofia Duque Santos ◽  
Ana Paula Pêgo

Platinum nanoparticles (PtNPs) have unique physico-chemical properties that led to their use in many branches of medicine. Recently, PtNPs gathered growing interest as delivery vectors for drugs, biosensors and as surface coating on chronically implanted biomedical devices for improving electrochemical properties. However, there are contradictory statements about their biocompatibility and impact on target organs such as the brain tissue, where these NPs are finding many applications. Furthermore, many of the reported studies are conducted in homeostasis conditions and, consequently, neglect the impact of the pathologic conditions on the tissue response. To expand our knowledge on the effects of PtNPs on neuronal and glial cells, we investigated the acute effects of monodisperse sodium citrate-coated PtNPs on rat organotypic hippocampal cultures in physiological or neuronal excitotoxic conditions induced by kainic acid (KA). The cellular responses of the PtNPs were evaluated through cytotoxic assays and confocal microscopy analysis. To mimic a pathologic scenario, 7-day organotypic hippocampal cultures were exposed to KA for 24 h. Subsequently, PtNPs were added to each slice. We show that incubation of the slices with PtNPs for 24 h, does not severely impact cell viability in normal conditions, with no significant differences when comparing the dentate gyrus (DG), as well as CA3 and CA1 pyramidal cell layers. Such effects are not exacerbated in KA-treated slices, where the presence of PtNPs does not cause additional neuronal propidium iodide (PI) uptake in CA3 and CA1 pyramidal cell layers. However, PtNPs cause microglial cell activation and morphological alterations in CA3 and DG regions indicating the establishment of an inflammatory reaction. Morphological analysis revealed that microglia acquire activated ameboid morphology with loss of ramifications, as a result of their response to PtNPs contact. Surprisingly, this effect is not increased in pathological conditions. Taken together, these results show that PtNPs cause microglia alterations in short-term studies. Additionally, there is no worsening of the tissue response in a neuropathological induced scenario. This work highlights the need of further research to allow for the safe use of PtNPs. Also, it supports the demand of the development of novel and more biocompatible NPs to be applied in the brain.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7663
Author(s):  
Aldona Balčiūnaitė ◽  
Aušrinė Zabielaitė ◽  
Daina Upskuvienė ◽  
Loreta Tamašauskaitė-Tamašiūnaitė ◽  
Irena Stalnionienė ◽  
...  

In this study, sodium borohydride oxidation has been investigated on the platinum nanoparticles modified copper/titanium catalysts (PtNPsCu/Ti), which were fabricated by employing the electroless copper plating and galvanic displacement technique. ICP-OES, XRD, FESEM, and EDX have been used to characterize PtNPsCu/Ti catalysts’ composition, structure, and surface morphology. The oxidation of sodium borohydride was examined on the PtNPsCu/Ti catalysts using cyclic voltammetry and chrono-techniques.


Sign in / Sign up

Export Citation Format

Share Document