Biological control of plant-parasitic nematodes: soil ecosystem management in sustainable agriculture

2015 ◽  
Vol 52 (09) ◽  
pp. 52-4753-52-4753
Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 123
Author(s):  
Oliver Knox ◽  
David Backhouse ◽  
Vadakattu Gupta

Soil nematode populations have the potential to indicate ecosystem disturbances. In response to questions about nematode interactions with soilborne diseases and whether genetically modified cotton altered nematode populations, several fields in the Namoi cotton growing area of Australia were sampled between 2005 and 2007. No significant interactions were observed, but nematodes numbers were low and postulated to be due to the use of the nematicide aldicarb. Aldicarb was removed from the system in 2011 and in 2015 funding allowed some fields to be resampled to determine if there had been a change in the nematode numbers following aldicarb removal. No significant changes in the total nematode numbers were observed, implying that the removal of aldicarb had little impact on the total nematode population size. However, an increase in plant parasitic nematodes was observed in both fields, but the species identified and the levels of change were not considered a threat to cotton production nor driven solely by altered pesticide chemistry. Additionally, greater numbers of higher order coloniser-persisters in the 2015 samples suggests that the current cotton production system is less disruptive to the soil ecosystem than that of a decade ago.


Nematology ◽  
2004 ◽  
Vol 6 (2) ◽  
pp. 161-170 ◽  
Author(s):  
Oliver Morton ◽  
Penny Hirsch ◽  
Brian Kerry

AbstractEnvironmental concerns over conventional nematicides have led to increasing interest in the use of biological control agents to control plant-parasitic nematodes. The development of nematophagous fungi as biological control agents has revealed a need for further understanding of their infection processes. The egg-parasitic fungi, Pochonia chlamydosporia and Paecilomyces lilacinus, and the nematode trapping fungus, Arthrobotrys oligospora, have received the most attention. Through the application of biochemistry and molecular biology, aspects of their infection processes have been elucidated. This has involved the characterisation of enzymes that aid penetration of the eggshell or the nematode body wall and the identification of nematicidal toxins. This growing understanding of the biology of infection is opening new avenues in the improvement of fungi as biological control agents.


Sign in / Sign up

Export Citation Format

Share Document