scholarly journals Quality road surfacing: two stages of control over design concept

2020 ◽  
pp. 99-109
Author(s):  
Aleksey Viktorovich Kamenchukov

This article examines the questions of improving the quality of design concepts on construction and reconstruction of roads. The primary subject of this research is the road surface, the quality of which directly affects the convenience and safety of traffic. The author also assesses the effectiveness of the system “subgrade – road surface” in the conditions of cyclical dynamic load from vehicles and temporal variability of the characteristics of soil ground-geological environment. An overview is conducted on the relevant requirements to engineering of road surface and efficiency assessment of design concepts. The author considers the national and foreign experience of road construction, including modern software  solutions. The two key aspects of selection and efficiency assessment of design solutions are formulated. The article describes the concept, algorithm and results of implementation of comprehensive methodology for assessing efficiency of engineering and construction of road surfaces. Detailed analysis is conducted on the stages of mathematical modeling and effectiveness of the system “subgrade – road surface”. An undisputable scientific novelty of this research consists in application of the modern mathematical apparatus, methods and techniques of linear programming, together with the leading company on the development of software for design and construction of roads. The necessity and practical importance of the elaborated concept on efficiency assessment of design concepts is confirmed by implementation into the practice of road construction. The conclusion is made that the application of integrated index of the effectiveness of construction of road surfaces, coupled with software packages for assessing the stress-deformed condition of soil ground-geological systems, allow eliminated the design errors and ensure maximal reliability and safety of roads under construction of reconstruction.

Author(s):  
Mikhail E. Piletsky ◽  
Anatoly F. Zubkov ◽  
Konstantin A. Andrianov ◽  
Marianna A. Porozhenko

Increased traffic intensity and increased axial Load from vehicles on road surfaces contribute to the formation of defects in the form of potholes and cracks. To improve the service Life and traffic safety timely care of the coating is required. Untimely work Leads to a decrease in the service Life of the pavement. The use of a jet-injection method of repair of road surfaces aLLows to perform work quickLy with minimaL cost in reLation to other methods of repair. The articLe considers the process of eLimination of defects on non-rigid road surfaces with the use of bitumen-mineraL mixtures by a jet-injection method. The resuLts of experimentaL studies carried out in the course of repair work on the second technicaL category road with high traffic intensity and increased axiaLLoad from vehicLes are presented. It was found out that the formation of the structure of the bitumen-mineraL mixture in the pothoLe of the road surface occurs over a reLativeLy Long period of time. Under the influence of contact stresses under the tire of the car, there are deformations of the material, the excess of whichLeads to its decompression. It is experimentaLLy proved that in order to increase the serviceLife of the repaired road surface, additionaL compaction of the bitumen-mineraL mixture is necessary. It was found that the excessLoad on the Layer of bitumen-mineraL mixture in the pothoLe coating at the stage of formation of its structure above the tensiLe strength contributes to the formation of pLastic deformations and reduce the required compaction coefficient. To improve the quaLity of repair work, it is necessary to Limit the axiaLLoad of vehicLes on the surface of the pothoLe for 20-30 days during the formation of the structure of the Laid materiaL in the pothoLe of the road surface.


1989 ◽  
Vol 17 (1) ◽  
pp. 66-84
Author(s):  
A. R. Williams

Abstract This is a summary of work by the author and his colleagues, as well as by others reported in the literature, that demonstrate a need for considering a vehicle, its tires, and the road surface as a system. The central theme is interaction at the footprint, especially that of truck tires. Individual and interactive effects of road and tires are considered under the major topics of road aggregate (macroscopic and microscopic properties), development of a novel road surface, safety, noise, rolling resistance, riding comfort, water drainage by both road and tire, development of tire tread compounds and a proving ground, and influence of tire wear on wet traction. A general conclusion is that road surfaces have both the major effect and the greater potential for improvement.


2020 ◽  
Vol 9 (1) ◽  
pp. 922-933
Author(s):  
Qing’e Wang ◽  
Kai Zheng ◽  
Huanan Yu ◽  
Luwei Zhao ◽  
Xuan Zhu ◽  
...  

AbstractOil leak from vehicles is one of the most common pollution types of the road. The spilled oil could be retained on the surface and spread in the air voids of the road, which results in a decrease in the friction coefficient of the road, affects driving safety, and causes damage to pavement materials over time. Photocatalytic degradation through nano-TiO2 is a safe, long-lasting, and sustainable technology among the many methods for treating oil contamination on road surfaces. In this study, the nano-TiO2 photocatalytic degradation effect of road surface oil pollution was evaluated through the lab experiment. First, a glass dish was used as a substrate to determine the basic working condition of the test; then, a test method considering the impact of different oil erosion degrees was proposed to eliminate the effect of oil erosion on asphalt pavement and leakage on cement pavement, which led to the development of a lab test method for the nano-TiO2 photocatalytic degradation effect of oil pollution on different road surfaces.


2021 ◽  
Vol 6 (2) ◽  
pp. 70-77
Author(s):  
Ari Siswanto ◽  
◽  
Ira Kusumawaty ◽  

Water functions are very diverse for humans for daily needs such as drinking water, bathing, agriculture, development, aesthetics, and lower temperatures. Palembang is a lowland area dominated by wetlands, tidal swamps, and rivers. The types of houses on stilts on the banks of the Musi river are limas, Gudang, and Chinese stilt houses which are always associated with the water environment. The construction of roads replacing the role of rivers has realized people that the water environment has an important meaning for the house on stilts. The research objective was to explore the meaning of the water environment from various aspects for residents, stilt houses, and their environment. This research method is a case study with data collection through interviews, observation, measurements, and taking photos. Data and findings were analyzed and juxtaposed with images in the field. The road construction has eliminated part of the function of the river and influenced the change in orientation of the house on stilts. In conclusion, respect for the water environment including rivers has decreased, causing the quality of the river to decline, and the house on stilts cannot take advantage of the existence of the water environment optimally


2019 ◽  
Vol 2 (1) ◽  
pp. 75
Author(s):  
Philipus Resato Nahak ◽  
Yosef Cahyo ◽  
Sigit Winarto

The increase in traffic volume will cause a decrease in service due to decreased road capacity due to an increase in side constraints and due to the increase in traffic volume itself, which will ultimately cause the level of road saturation to increase. The situation occurred in the Umasukaer road section of the Malacca Regency. Therefore it is necessary to address improvements in the quality of the road in order to meet the feasibility of transportation facilities by taking into account the existing technical requirements. The results of planning found that through the 2015 LHR survey data with a prediction of an increase in traffic density of 6% per year, the LHR was obtained with a planned age of 7 years = 2540.7 vehicles/day/department and a 20-year plan life LHR = 5419.1 ked/day / major. The results of a gradual construction planning pavement study can be concluded that the planning model that has been designed is effective in strengthening road construction in accordance with existing technical requirements and efficient in terms of financing. The final results of gradual construction pavement thickness results are: Ashburton thickness (MS 744) = 8 cm, Ashburton (MS 744) = 13 cm, broken stone (CBR 100) = 20 cm, Sirtu (CBR 50) = 10 cm and CBR subgrade 5%. Pertambahan volume lalu lintas akan menyebabkan penurunan layanan diakibatkan menurunnya kapasitas jalan karena adanya peningkatan hambatan samping maupun karena beratambahnya volume lalu lintas itu sendiri yang pada akhirnya akan meyebabkan tingkat kejenuhan jalan meningkat. Keadaan tersebut terjadi ruas jalan Umasukaer Kabupaten Malaka, oleh karena itu perlu adanya penanganan perbaikan kualitas jalan agar memenuhi segi kelayakan sarana transportasi dengan memperhatikan syarat-syarat teknik yang ada. Hasil perencanaan didapatkan bahwa melalui data survey LHR tahun 2015 dengan prediksi peningkatan kepadatan lalu lintas sebesar 6% pertahun maka didapatkan LHR dengan umur rencana 7 tahun = 2540,7 kend/hr/jurusan dan LHR umur rencana 20 tahun = 5419,1 ked/hr/jurusan. Hasil studi perencanaan perkerasan konstruksi bertahap dapat diambil kesimpulan bahwa model perencaaan yang telah dirancang efektif dalam memperkerasa konstruksi jalan sesuai dengan syarat teknis yang ada serta efisien dalam hal pembiayaan. Hasil akhir tebal perkerasan konstruksi bertahap diperoleh hasil: Ketebalan Asbuton (MS 744) = 8 cm, Asbuton (MS 744) = 13 cm, batu pecah (CBR 100) = 20 cm, Sirtu (CBR 50) = 10 cm dan CBR tanah dasar 5%.


2018 ◽  
Vol 51 (1) ◽  
pp. 65-81 ◽  
Author(s):  
N Strbac-Hadzibegovic ◽  
S Strbac-Savic ◽  
M Kostic

Numerous measurements have shown that the standard R classes do not represent adequately many road surfaces used nowadays. Therefore, the construction of portable reflectometers intended for on-site measurements of road surface reflection properties has been given particular attention during the last decade. This paper presents a new procedure for the improvement of the accuracy of such a portable reflectometer. Optimally extrapolating the values of the 20 luminance coefficients (q), each measured by the portable reflectometer for a set of angles of observation (α = 5°–80°), the 20 q-values referring to α = 1° are calculated. This enables their comparison with the corresponding q elements from each of the 447 reduced q-tables derived from the available r-table database, obtained by using a precise laboratory reflectometer on a wide variety of road samples. Selecting the closest reduced q-table, the corresponding r-table and the actual average luminance coefficient can be determined. In order to validate the proposed procedure, which can also be applied to other similar portable reflectometers, measurements of the luminance and overall and longitudinal luminance uniformities were carried out on eleven road-lighting installations. They showed that the results obtained by this procedure deviate only slightly from those obtained using r-tables determined by the laboratory reflectometer.


1956 ◽  
Vol 29 (4) ◽  
pp. 1425-1433 ◽  
Author(s):  
K. Knauerhase

Abstract To ensure safety from skidding, attention has up to now been devoted to building rough surface roads, to the development of the proper vehicle construction with respect to this feature, and to the factor most directly involved, the tires. Special attention has been directed in connection with this latter phase to a much more open tread patterning and to the effect of decreasing tire inflation, both of which affect the life of the tire adversely. These steps neglected to take advantage of the physical effect of adhesion, which, without lowering the durability, now makes possible an enhanced contribution to the cohesive friction by the profile grooves which are of necessity retained to keep the weight down. The goal is, therefore, to provide the smooth surfaces of the tread pattern that come in contact with the road with the greatest possible physical gripping power, or adhesion. After illustrating the interfacial magnitudes with the help of a vector diagram, we shall survey the laws of boundary surface adhesion. Here the great influence of the liquid involved in wet friction becomes clear and the particularly favorable interfacial tension property of water can be assessed. Since skidding can occur only at the interfaces : rubber-water, or water-road, the requirement is as follows : both the greatest possible wetting power between rubber and water, and also between water and road surface, that is, hydrophilic properties in the rubber and hydrophilic road surfaces, in order to reduce the danger of skidding. Good insurance against skidding requires hydrophilic rubber and a hydrophilic road surface, for a tire that has been developed to be nonskidding holds on a hydrophilic road surface and skids on a hydrophobic road surface. A hydrophobic tire, on the other hand, skids on any wet road. Although considerable advances have been made with respect to safety from skidding since rubber tires were first developed for motor vehicles, with increase of speeds this problem demands our attention to a greater and greater degree. Safety from skidding can result only from the combined efforts of road and car builders, tire makers, and the chemists and physicists of all three groups.


Jurnal CIVILA ◽  
2018 ◽  
Vol 3 (2) ◽  
pp. 154
Author(s):  
Errine Yulia Rizqi Intanti ◽  
Zulkifli Lubis

In Indonesia, the road construction has experienced a fairly good development. From a wide range of road constructions, flexible pavement is the most chosen one because its characteristics: easy, fast, and efficient. However, flexible pavement has many weaknesses, for example the premature damage on the road surface after some time passed by the traffic so that the road cannot reach the planned age. For that, it is done a research to add a hot asphalt mixture material that aims to improve the quality of the mixture results. The selected ingredient is natural water hyacinth. The method used is trial and error with reference of SNI 03-1737-1989. Variations used are 2%, 4%, 6%, 8% and 10% of the asphalt weight, asphalt level used is 5.72 %. Of the 5 variations of mixture used on Type XI Asphalt Concrete Layer, it is obtained the result that the water hyacinth fiber level which has the best score and meet the specifications of SNI 03-1737-1989 is on the percentage of 6% which obtained from calculation data using graphs and regression model where Marshall Stability is equal to 644,46 Kg, flow 3,39 mm, VMA (voids in the mineral aggregate) is equal to 13,83 %, VFWA (voids filled with asphalt) is equal to 65,35%, VIM (voids in the mix) is equal to 2,52 %, density of 2.31 gr/cc, and Marshall Quotient of 164.03 Kg / mm.


2020 ◽  
Vol 10 (3) ◽  
pp. 95-103
Author(s):  
Vladimir Pobedinskiy ◽  
Sergey Buldakov ◽  
Andrey Berstenev ◽  
Elena Anastas

The article is devoted to the problem of improving road construction technologies, in particular, technological solutions for logging roads. As you know, in road construction, the choice and justification of technological solutions for the road surface is one of the first stages of design, the efficiency of which affects further project as a whole, timing and costs of construction. The solution to such a problem is extremely difficult and, first of all, due to the many interrelated parameters, factors, as well as the uncertainties of data in the problem. The task becomes much more complicated when it is also necessary to take into account the economic indicators of road construction project. But it is in this form that it is of the greatest interest, since these characteristics are often the most important in practice. For these reasons, the problem remains completely unsolved. Therefore, requires further research, as noted, taking into account the uncertainties in the problem. Intelligent systems based on the theory of fuzzy sets, neural networks and their hybrid solutions are proposed for this class of problems, as a result of modern achievements in the field of mathematics and information technologies. Thus, the purpose of this research was to develop a neural network for evaluating technological solutions for logging roads. The result of the research was the development of an adaptive neuro-fuzzy network such as ANFIS, which allows calculating the cost of the road surface depending on the main technological and initial financial parameters. The neural network can be recommended for the design of forest roads, as well as for rapid assessment of the effectiveness of various technological solutions during competitive (tender) selection.


Sign in / Sign up

Export Citation Format

Share Document