scholarly journals ON THE LINEAR TRANSFORMATIONS OF GAUSSIAN TRAJEC-TORY PARAMETERS AND THEIR INFLUENCE UPON ELECTRON OPTICAL ABERRATIONS

1981 ◽  
Vol 30 (4) ◽  
pp. 472
Author(s):  
XIMEN JI-YE
2017 ◽  
Vol 36 (4) ◽  
pp. 1
Author(s):  
Clemens Birklbauer ◽  
David C. Schedl ◽  
Oliver Bimber

Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 45
Author(s):  
Fanwen Meng ◽  
Jacqueline Jonklaas ◽  
Melvin Khee-Shing Leow

Clinicians often encounter thyroid function tests (TFT) comprising serum/plasma free thyroxine (FT4) and thyroid stimulating hormone (TSH) measured using different assay platforms during the course of follow-up evaluations which complicates reliable comparison and interpretation of TFT changes. Although interconversion between concentration units is straightforward, the validity of interconversion of FT4/TSH values from one assay platform to another with different reference intervals remains questionable. This study aims to establish an accurate and reliable methodology of interconverting FT4 by any laboratory to an equivalent FT4 value scaled to a reference range of interest via linear transformation methods. As a proof-of-concept, FT4 was simultaneously assayed by direct analog immunoassay, tandem mass spectrometry and equilibrium dialysis. Both linear and piecewise linear transformations proved relatively accurate for FT4 inter-scale conversion. Linear transformation performs better when FT4 are converted from a more accurate to a less accurate assay platform. The converse is true, whereby piecewise linear transformation is superior to linear transformation when converting values from a less accurate method to a more robust assay platform. Such transformations can potentially apply to other biochemical analytes scale conversions, including TSH. This aids interpretation of TFT trends while monitoring the treatment of patients with thyroid disorders.


2021 ◽  
Vol 2 (5) ◽  
Author(s):  
Soroosh Tayebi Arasteh ◽  
Adam Kalisz

AbstractSplines are one of the main methods of mathematically representing complicated shapes, which have become the primary technique in the fields of Computer Graphics (CG) and Computer-Aided Geometric Design (CAGD) for modeling complex surfaces. Among all, Bézier and Catmull–Rom splines are the most common in the sub-fields of engineering. In this paper, we focus on conversion between cubic Bézier and Catmull–Rom curve segments, rather than going through their properties. By deriving the conversion equations, we aim at converting the original set of the control points of either of the Catmull–Rom or Bézier cubic curves to a new set of control points, which corresponds to approximately the same shape as the original curve, when considered as the set of the control points of the other curve. Due to providing simple linear transformations of control points, the method is very simple, efficient, and easy to implement, which is further validated in this paper using some numerical and visual examples.


2020 ◽  
Author(s):  
Salim Baigildin ◽  
Konstantin Ushenin ◽  
Aigul Fabarisova ◽  
Marat Bogdanov ◽  
Olga Solovyeva

1980 ◽  
Vol 80 (4) ◽  
pp. 544-544 ◽  
Author(s):  
Thomas Craven ◽  
George Csordas

2014 ◽  
Vol 91 (1) ◽  
pp. 104-115 ◽  
Author(s):  
SUREEPORN CHAOPRAKNOI ◽  
TEERAPHONG PHONGPATTANACHAROEN ◽  
PONGSAN PRAKITSRI

AbstractHiggins [‘The Mitsch order on a semigroup’, Semigroup Forum 49 (1994), 261–266] showed that the natural partial orders on a semigroup and its regular subsemigroups coincide. This is why we are interested in the study of the natural partial order on nonregular semigroups. Of particular interest are the nonregular semigroups of linear transformations with lower bounds on the nullity or the co-rank. In this paper, we determine when they exist, characterise the natural partial order on these nonregular semigroups and consider questions of compatibility, minimality and maximality. In addition, we provide many examples associated with our results.


Author(s):  
A. B. Bhatia ◽  
E. Wolf

ABSTRACTThe paper is concerned with the construction of polynomials in two variables, which form a complete orthogonal set for the interior of the unit circle and which are ‘invariant in form’ with respect to rotations of axes about the origin of coordinates. It is found that though there exist an infinity of such sets there is only one set which in addition has certain simple properties strictly analogous to that of Legendre polynomials. This set is found to be identical with the set of the circle polynomials of Zernike which play an important part in the theory of phase contrast and in the Nijboer-Zernike diffraction theory of optical aberrations.The results make it possible to derive explicit expressions for the Zernike polynomials in a simple, systematic manner. The method employed may also be used to derive other orthogonal sets. One new set is investigated, and the generating functions for this set and for the Zernike polynomials are also given.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Abdullah M. Al-Roqi

The notion of unisoft subfields, unisoft algebras over unisoft subfields, and unisoft hypervector spaces are introduced, and their properties and characterizations are considered. In connection with linear transformations, unisoft hypervector spaces are discussed.


Sign in / Sign up

Export Citation Format

Share Document