scholarly journals Combined application of biochar and nitrogen fertilizer improves rice yield, microbial activity and N-metabolism in a pot experiment

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10311 ◽  
Author(s):  
Izhar Ali ◽  
Saif Ullah ◽  
Liang He ◽  
Quan Zhao ◽  
Anas Iqbal ◽  
...  

The excessive use of synthetic nitrogen (N) fertilizers in rice (Oryza sativa L.) has resulted in high N loss, soil degradation, and environmental pollution in a changing climate. Soil biochar amendment is proposed as a climate change mitigation tool that supports carbon sequestration and reduces N losses and greenhouse gas (GHG) emissions from the soil. The current study evaluated the impact of four different rates of biochar (B) (C/B0-0 t ha−1, B1-20 t ha−1, B2-40 t ha−1, and B3-60 t ha−1) and two N levels (N1; low (270 kg N ha−1) and N2; high (360 kg N ha−1)), on rice (cultivar Zhenguiai) grown in pots. Significant increases in the average soil microbial biomass N (SMBN) (88%) and carbon (87%) were recorded at the highest rate of 60-ton ha−1B and 360 kg N ha−1 compared to the control (N1C) during both seasons (S1 and S2). The photochemical efficiency (Fv/Fm), quantum yield of the photosystem (PS) II (ΦPS II), electron transport rate (ETR), and photochemical quenching (qP) were enhanced at low rates of biochar applications (20 to 40 t B ha−1) for high and low N rates across the seasons. Nitrate reductase (NR), glutamine synthetase (GS), and glutamine 2-oxoglutarate aminotransferase (GOGAT) activity were, on average, 39%, 55%, and 63% higher in the N1B3, N2B2, and N2B3 treatments, respectively than the N1C. The grain quality was higher in the N1B3 treatment than the N1C, i.e., the protein content (PC), amylose content (AC), percent brown rice (BRP), and percent milled rice (MRP) were, on average, 16%, 28%, 4.6%, and 5% higher, respectively in both seasons. The results of this study indicated that biochar addition to the soil in combination with N fertilizers increased the dry matter (DM) content, N uptake, and grain yield of rice by 24%, 27%, and 64%, respectively, compared to the N1C.

2012 ◽  
Vol 460 ◽  
pp. 3-6
Author(s):  
Zhen Jiang Xu ◽  
Li Zhong Xiao ◽  
Hong Liu ◽  
Yong Hao Ren ◽  
Zhi Lin Li

Using two conventional aromatic rice cultivars and one hybrid aromatic rice combination, effects on the quality of aromatic rice were studied by spraying zinc and other multiple nutrient elements under the field experiment.The results showed that by spraying Zn, ZnMg,ZnMgK and ZnMgKFeCu MoCoB on heading stage and followed on the 7th and 14th day after the heading stage, the rate of brown rice, milled rice and head rice, the score of aroma and eating and the content of protein were improved, the chalky rice rate, chalkiness and amylose content were reduced and at the same time the length of rice gel was elongated, therefore the processing quality, appearance quality, cooking and eating quality and nutrient quality of aromatic rice were improved to some extent. The highest quality of aromatic rice was achieved by spraying the combination of Zn and all the other multiple nutrient elements, followed by spraying ZnMgK, ZnMg and Zn solely.


2018 ◽  
Vol 19 (8) ◽  
pp. 2231 ◽  
Author(s):  
Zhe Guan ◽  
Wanzhen Wang ◽  
Xingle Yu ◽  
Wenfang Lin ◽  
Ying Miao

Pale yellowing of leaf variegation is observed in the mutant Arabidopsis lines Calcineurin B-Like-Interacting Protein Kinase14 (CIPK14) overexpression (oeCIPK14) and double-knockout WHIRLY1/WHIRLY3 (why1/3). Further, the relative distribution of WHIRLY1 (WHY1) protein between plastids and the nucleus is affected by the phosphorylation of WHY1 by CIPK14. To elucidate the coregulation of CIPK14 and WHIRLY1/WHIRLY3-mediated pale yellowing of leaves, a differential proteomic analysis was conducted between the oeCIPK14 variegated (oeCIPK14-var) line, why1/3 variegated (why1/3-var) line, and wild type (WT). More than 800 protein spots were resolved on each gel, and 67 differentially abundant proteins (DAPs) were identified by matrix-assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF-MS). Of these 67 proteins, 34 DAPs were in the oeCIPK14-var line and 33 DAPs were in the why1/3-var line compared to the WT. Five overlapping proteins were differentially expressed in both the oeCIPK14-var and why1/3-var lines: ATP-dependent Clp protease proteolytic subunit-related protein 3 (ClpR3), Ribulose bisphosphate carboxylase large chain (RBCL), Beta-amylase 3 (BAM3), Ribosome-recycling factor (RRF), and Ribulose bisphosphate carboxylase small chain (RBCS). Bioinformatics analysis showed that most of the DAPs are involved in photosynthesis, defense and antioxidation pathways, protein metabolism, amino acid metabolism, energy metabolism, malate biosynthesis, lipid metabolism, and transcription. Thus, in the why1/3-var and oeCIPK14-var lines, there was a decrease in the photosystem parameters, including the content of chlorophyll, the photochemical efficiency of photosystem (PS II) (Fv/Fm), and electron transport rates (ETRs), but there was an increase in non-photochemical quenching (NPQ). Both mutants showed high sensitivity to intense light. Based on the annotation of the DAPs from both why1/3-var and oeCIPK14-var lines, we conclude that the CIPK14 phosphorylation-mediated WHY1 deficiency in plastids is related to the impairment of protein metabolism, leading to chloroplast dysfunction.


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12741
Author(s):  
Ruier Zeng ◽  
Jing Cao ◽  
Xi Li ◽  
Xinyue Wang ◽  
Ying Wang ◽  
...  

Fifteen peanut varieties at the pod filling stage were exposed to waterlogging stress for 7 days, the enzyme activities and fluorescence parameters were measured after 7 days of waterlogging and drainage. The waterlogging tolerance and recovery capability of varieties were identified. After waterlogging, waterlogging tolerance coefficient (WTC) of relative electrolyte linkage (REL), malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, and catalase (CAT) activity, non-photochemical quenching (NPQ) and photochemical quenching (qL) of leaves of most peanut varieties were increased, while the WTC of the soil and plant analysis development (SPAD) value, PS II actual quantum yield (ΦPS II), maximum photochemical efficiency (Fv/Fm) were decreased. After drainage, the WTC of REL, MDA content, SOD and CAT activity of leaves were decreased compared with that of after waterlogging, but these indicators of a few cultivars were increased. ΦPS II, Fv/Fm and qL can be used as important indexes to identify waterlogging recovery capability. There was a significant negative correlation between recovery capability and the proportion of reduction in yield, while no significant correlation was found between waterlogging tolerance and the proportion of reduction in yield. Therefore, it is recommended to select varieties with high recovery capability and less pod number reduction under waterlogging in peanut breeding and cultivation.


2012 ◽  
Vol 239-240 ◽  
pp. 163-166 ◽  
Author(s):  
Herlina Abdul Rahim ◽  
Syahira Ibrahim

Nowadays, there are many breeding program to improve the quality of rice since the direct measurement (iodine colorimetric) is time consuming, complex and environmentally unfriendly. The objective of this study was to analyze the amylose content (AC) in several types of local rice and import rice in Malaysia. Next is to investigate suitable rice intake for diabetic patient. In this study, non-destructive method by using Near-Infrared Spectroscopy (NIRS) was used to measure the amylose content of single rice grain for milled rice and brown rice. The result showed that the AC for the brown rice was higher than basmati rice followed by local white rice. Therefore, the high amylose content is most suitable for the diabetic patient. Thus, NIRS was a convenient way to screen the quality of rice as well as increase the global competitive for farmers in agriculture field.


2019 ◽  
Vol 48 (3) ◽  
pp. 583-593
Author(s):  
Mengsha Li ◽  
Xin Sui ◽  
Huihui Zhang ◽  
Nan Xu ◽  
Tong Zhang ◽  
...  

The effect of transplanting alfalfa (Medicago sativa) seedlings from artificial, low-intensity light into bright sunlight was investigated. The variance of photosynthetic function in young and mature leaves was investigated in plants grown in a low-light greenhouse environment (controls) and then the plants were subjected to high-intensity light for 12 hrs (treatment). The results showed that the photosynthetic capacity of young leaf blades was significantly lower than that of mature blades, and, the ability to capture and use light was low for young leaves. In control plants, the parameters of chlorophyll-dependent photochemical efficiency (ФPSII), electron transfer rate (ETR), photochemical quenching coefficiency (qP) and non-photochemical quenching coefficiency (qN) were all significantly lower in younger than mature leaves. There was no significant difference in the photochemical efficiency (Fv/Fm) or light energy distribution parameters between young and mature leaves of control plants. After light treatment, the photosynthetic carbon assimilation capacity and photochemical activity of the PS II reaction center decreased significantly, and both net photosynthetic ratio and chlorophyll b fluorescence parameters changed significantly more than in young leaves than in mature leaves under different PFD. This was particularly evident for Fv/Fm of the young leaves, whose decrease proved that the adaptability of young leaves to convert light was significantly lower than that of mature leaves. Obvious differences in the degree and mechanism of protection against light damage exist between young and mature leaves. Mature leaves dissipated excess excitation energy. In contrast, young leaves dissipated excess excitation by inactivation of the photosynthetic reaction center.


2021 ◽  
pp. 741-751
Author(s):  
Nessreen N. Bassuony ◽  
Eman N. M. Mohamed ◽  
Ekram H. Barakat

This study aimed to study the effect of the germination process on grain quality, chemical composition for brown rice and comparing them with white rice for use it is on a commercial scale . Three rice varieties namely Sakha 104(Japonica), Giza 178(Japonica- Indica), and Giza 182(Indica) were used in this study. And the three statuses (milled rice, brown rice, and germinated brown rice). A completely randomized design in the factorial arrangement was used in this experiment to determine some cooking and eating quality characters i.e. gelatinization temperature, amylose content and elongation %, Water uptake, hardness, chemical composition: Phytic acid, total antioxidant capacity, and panel test evaluation for rice samples. The results indicated that there were significant differences in amylose content and gelatinization temperature among the three rice statuses and no significant difference in these characters with the three rice varieties under study. Germinated brown rice showed the lowest amylose content (15.58%), followed by brown rice (17.26%) and white rice (18.39%). Brown rice gave the highest temperature followed by germinated brown rice then milled rice. A maximum elongation ratio was observed in Giza178 (Japonica Indica). White rice gave the maximum elongation (47.18%) followed by germinated brown (24.56 %) then brown rice (16.08 %). Japonica rice exhibited lower hardness than indica rice. The strongest value (4.82) was recorded at brown rice, while the weakest value (3.64) was in white rice. The Indica rice variety Giza181 had the highest protein and fat%. The germinated brown rice had the highest value of protein, crude fiber, and fat (7.27, 1.98, and 2.87%, respectively), compared with compared to brown rice and white rice. White rice had lower Phytic acid (%) followed by germinated brown rice, then brown rice. Japonica rice cultivar (Sakha 104) has a higher antioxidant level than Indica rice cultivar (Giza 182)....


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dan Jiang ◽  
Bin Lu ◽  
Liantao Liu ◽  
Wenjing Duan ◽  
Yanjun Meng ◽  
...  

Abstract Background As damage to the ecological environment continues to increase amid unreasonable amounts of irrigation, soil salinization has become a major challenge to agricultural development. Melatonin (MT) is a pleiotropic signal molecule and indole hormone, which alleviates the damage of abiotic stress to plants. MT has been confirmed to eliminate reactive oxygen species (ROS) by improving the antioxidant system and reducing oxidative damage under adversity. However, the mechanism by which exogenous MT mediates salt tolerance by regulating the photosynthetic capacity and ion balance of cotton seedlings still remains unknown. In this study, the regulatory effects of MT on the photosynthetic system, osmotic modulators, chloroplast, and anatomical structure of cotton seedlings were determined under 0–500 μM MT treatments with salt stress induced by treatment with 150 mM NaCl. Results Salt stress reduces the chlorophyll content, net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, PSII photochemical efficiency, PSII actual photochemical quantum yield, the apparent electron transfer efficiency, stomata opening, and biomass. In addition, it increases non-photochemical quenching. All of these responses were effectively alleviated by exogenous treatment with MT. Exogenous MT reduces oxidative damage and lipid peroxidation by reducing salt-induced ROS and protects the plasma membrane from oxidative toxicity. MT also reduces the osmotic pressure by reducing the salt-induced accumulation of Na+ and increasing the contents of K+ and proline. Exogenous MT can facilitate stomatal opening and protect the integrity of cotton chloroplast grana lamella structure and mitochondria under salt stress, protect the photosynthetic system of plants, and improve their biomass. An anatomical analysis of leaves and stems showed that MT can improve xylem and phloem and other properties and aides in the transportation of water, inorganic salts, and organic substances. Therefore, the application of MT attenuates salt-induced stress damage to plants. Treatment with exogenous MT positively increased the salt tolerance of cotton seedlings by improving their photosynthetic capacity, stomatal characteristics, ion balance, osmotic substance biosynthetic pathways, and chloroplast and anatomical structures (xylem vessels and phloem vessels). Conclusions Our study attributes help to protect the structural stability of photosynthetic organs and increase the amount of material accumulation, thereby reducing salt-induced secondary stress. The mechanisms of MT-induced plant tolerance to salt stress provide a theoretical basis for the use of MT to alleviate salt stress caused by unreasonable irrigation, fertilization, and climate change.


2019 ◽  
Vol 14 (1) ◽  
pp. 62-68 ◽  
Author(s):  
Daniel Gonzalez-Mendoza ◽  
Benjamín Valdez-Salas ◽  
Erick Bernardo-Mazariegos ◽  
Olivia Tzintzun-Camacho ◽  
Federico Gutiérrez-Miceli ◽  
...  

AbstractThe present study was conducted to evaluate the impact of monometallic and bimetallic nanoparticles (NPs) of copper (Cu) and silver (Ag) from Justicia spicigera on the photochemical efficiency and phenol pattern of Prosopis glandulosa. In this study, the existence of localized surface plasmon resonance absorption associated with the nano-sized nature of Ag, Cu and Cu/Ag particles was confirmed by the presence of a single peak around 487, 585, and 487/580 nm respectively. Zeta potential and electrophoretic mobility were found to be 0.2 mV and 0.02 μmcm/(Vs) for synthesized NPs indicating less stability and thus tendency to agglomerate, and broad distribution of particles. Cu-NPs and Cu/Ag-NPs demonstrate that the dispersed phase is stable and has a minimum particle size at zeta potentials above –30 mV. Changes in phenolic compounds, total chlorophyll, and photochemical efficiency in leaves exposed to Ag, Cu and Cu/Ag phyto-nanoparticles were evaluated up to 72 hours. The results revealed that Ag-NP and Cu-NP from J. spicigera at 100 mg/L showed significant reduction in chlorophyll, epidermal polyphenol content and photochemical efficiency of P. glandulosa. In contrast, the application of bimetallic Cu/Ag-NP from J. spicigera showed a positive impact on physiological parameters of P. glandulosa after 72 h of exposure.


2004 ◽  
Vol 84 (4) ◽  
pp. 421-430 ◽  
Author(s):  
Y. K. Soon ◽  
M. A. Arshad

A field study was conducted to determine the effects and interactions of crop sequence, tillage and residue management on labile N pools and their availability because such information is sparse. Experimental treatments were no-till (NT) vs. conventional tillage (CT), and removal vs. retention of straw, imposed on a barley (Hordeum vulgare L.)-canola (Brassica rapa L.)-field pea (Pisum sativum L.) rotation. 15N-labelling was used to quantify N uptake from straw, below-ground N (BGN), and fertilizer N. Straw retention increased soil microbial biomass N (MBN) in 2 of 3 yr at the four-leaf growth stage of barley, consistent with observed decreases in extractable soil inorganic N at seeding. However, crop yield and N uptake at maturity were not different between straw treatments. No tillage increased soil MBN, crop yield and N uptake compared to CT, but had no effect on extractable soil inorganic N. The greater availability of N under NT was probably related to soil moisture conservation. Tillage effects on soil and plant N were mostly independent of straw treatment. Straw and tillage treatments did not influence the uptake of N from its various sources. However, barley following pea (legume/non-legume sequence) derived a greater proportion of its N from BGN (13 to 23% or 9 to 23 kg N ha-1) than canola following barley (nonlegumes) (6 to 16% or 3 to 9 kg N ha-1). Fertilizer N constituted 8 to 11% of barley N uptake and 23 to 32% of canola N uptake. Straw N contributed only 1 to 3% of plant N uptake. This study showed the dominant influence of tillage on N availability, and of the preceding crop or cropping sequence on N uptake partitioning among available N sources. Key words: Crop residue, crop sequence, labile nitrogen, nitrogen uptake, pea, tillage


2018 ◽  
Vol 24 (1) ◽  
pp. 19
Author(s):  
Sobrizal Sobrizal ◽  
Carkum Carkum ◽  
Wijaya M. Indriatama ◽  
Aryanti Aryanti ◽  
Ita Dwimahyani

<p>In the middle of 1980s, rice self-sufficiency in Indonesia has been achieved, but the growth of rice production slowed down since the 1990s. Narrow genetic variability of released rice varieties contributed largely to the occurrence of leveling of potential rice yield over the past decades. To enlarge the genetic variability, an intersubspecies crossing of Koshihikari (japonica) and IR36 (indica) has been performed. Through this crossing, three high yielding and high yield quality promising lines of KI 37, KI 238, and KI 730 have been obtained. The objective of this study was to evaluate the superiorities of these lines through multi-location yield trials, pests, diseases, and grain qualities examinations. Examination methods used followed the release food crops variety procedure issued by the Indonesian Ministry of Agriculture. The result of examinations showed that the average yield of KI 730 was 7.47 t/ha, it was significantly higher than that of Ciherang (6,73 t/ha). KI 730 has a good grain quality, with translucent milled rice, a high percentage of milled rice (78.0%) and head rice (91.01%). The texture of its cooking rice was soft, sticky, with the amylose content of 20.41%. In addition, pests and diseases resistances of KI 730 were better than those of other lines tested. After evaluation by National Food Crops Release Variety Team, the KI 730 line was released as a national superior variety with the name of Tropiko. Tropiko should become an alternative variety to grow widely in order to increase national rice production and farmers income.</p>


Sign in / Sign up

Export Citation Format

Share Document