phylogenetic networks
Recently Published Documents


TOTAL DOCUMENTS

307
(FIVE YEARS 98)

H-INDEX

34
(FIVE YEARS 5)

2022 ◽  
Vol 84 (2) ◽  
Author(s):  
Stephen J. Willson

AbstractAs phylogenetic networks grow increasingly complicated, systematic methods for simplifying them to reveal properties will become more useful. This paper considers how to modify acyclic phylogenetic networks into other acyclic networks by contracting specific arcs that include a set D. The networks need not be binary, so vertices in the networks may have more than two parents and/or more than two children. In general, in order to make the resulting network acyclic, additional arcs not in D must also be contracted. This paper shows how to choose D so that the resulting acyclic network is “pre-normal”. As a result, removal of all redundant arcs yields a normal network. The set D can be selected based only on the geometry of the network, giving a well-defined normal phylogenetic network depending only on the given network. There are CSD maps relating most of the networks. The resulting network can be visualized as a “wired lift” in the original network, which appears as the original network with each arc drawn in one of three ways.


Author(s):  
Remie Janssen ◽  
Pengyu Liu

Phylogenetic networks represent evolutionary history of species and can record natural reticulate evolutionary processes such as horizontal gene transfer and gene recombination. This makes phylogenetic networks a more comprehensive representation of evolutionary history compared to phylogenetic trees. Stochastic processes for generating random trees or networks are important tools in evolutionary analysis, especially in phylogeny reconstruction where they can be utilized for validation or serve as priors for Bayesian methods. However, as more network generators are developed, there is a lack of discussion or comparison for different generators. To bridge this gap, we compare a set of phylogenetic network generators by profiling topological summary statistics of the generated networks over the number of reticulations and comparing the topological profiles.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rosanne Wallin ◽  
Leo van Iersel ◽  
Steven Kelk ◽  
Leen Stougie

Abstract Background Rooted phylogenetic networks are used to display complex evolutionary history involving so-called reticulation events, such as genetic recombination. Various methods have been developed to construct such networks, using for example a multiple sequence alignment or multiple phylogenetic trees as input data. Coronaviruses are known to recombine frequently, but rooted phylogenetic networks have not yet been used extensively to describe their evolutionary history. Here, we created a workflow to compare the evolutionary history of SARS-CoV-2 with other SARS-like viruses using several rooted phylogenetic network inference algorithms. This workflow includes filtering noise from sets of phylogenetic trees by contracting edges based on branch length and bootstrap support, followed by resolution of multifurcations. We explored the running times of the network inference algorithms, the impact of filtering on the properties of the produced networks, and attempted to derive biological insights regarding the evolution of SARS-CoV-2 from them. Results The network inference algorithms are capable of constructing rooted phylogenetic networks for coronavirus data, although running-time limitations require restricting such datasets to a relatively small number of taxa. Filtering generally reduces the number of reticulations in the produced networks and increases their temporal consistency. Taxon bat-SL-CoVZC45 emerges as a major and structural source of discordance in the dataset. The tested algorithms often indicate that SARS-CoV-2/RaTG13 is a tree-like clade, with possibly some reticulate activity further back in their history. A smaller number of constructed networks posit SARS-CoV-2 as a possible recombinant, although this might be a methodological artefact arising from the interaction of bat-SL-CoVZC45 discordance and the optimization criteria used. Conclusion Our results demonstrate that as part of a wider workflow and with careful attention paid to running time, rooted phylogenetic network algorithms are capable of producing plausible networks from coronavirus data. These networks partly corroborate existing theories about SARS-CoV-2, and partly produce new avenues for exploration regarding the location and significance of reticulate activity within the wider group of SARS-like viruses. Our workflow may serve as a model for pipelines in which phylogenetic network algorithms can be used to analyse different datasets and test different hypotheses.


Genetics ◽  
2021 ◽  
Author(s):  
Mark S Hibbins ◽  
Matthew W Hahn

Abstract Phylogenomics has revealed the remarkable frequency with which introgression occurs across the tree of life. These discoveries have been enabled by the rapid growth of methods designed to detect and characterize introgression from whole-genome sequencing data. A large class of phylogenomic methods makes use of data across species to infer and characterize introgression based on expectations from the multispecies coalescent. These methods range from simple tests, such as the D-statistic, to model-based approaches for inferring phylogenetic networks. Here, we provide a detailed overview of the various signals that different modes of introgression are expected leave in the genome, and how current methods are designed to detect them. We discuss the strengths and pitfalls of these approaches and identify areas for future development, highlighting the different signals of introgression, and the power of each method to detect them. We conclude with a discussion of current challenges in inferring introgression and how they could potentially be addressed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Miquel Pons ◽  
Josep Batle

AbstractThe combinatorial study of phylogenetic networks has attracted much attention in recent times. In particular, one class of them, the so-called tree-child networks, are becoming the most prominent ones. However, their combinatorial properties are largely unknown. In this paper we address the problem of exactly counting them. We conjecture a relationship with the cardinality of a certain class of words. By solving the counting problem for the words, and on the basis of the conjecture, several simple recurrence formulas for general cases arise. Moreover, a precise asymptotic analysis is provided. Our results coincide with all current formulas in the literature for particular subclasses of tree-child networks, as well as with numerical results obtained for small networks. We expect that the study of the relationship between the newly defined words and the networks will lead to further combinatoric characterizations of this class of phylogenetic networks.


2021 ◽  
Author(s):  
Mengzhen Guo ◽  
Stefan Grünewald

We present Lpnet, a variant of the widely used Neighbor-net method that approximates pairwise distances between taxa by a circular phylogenetic network. We use integer linear programming to replace a heurisristic part of the agglomeration procedure based on local information by an exact global solution. This approach achieves an improved approximation of the input distance for the clear majority of experiments that we have run for simulated and real data. We release an implementation in R that can handle up to 94 taxa and usually needs about one minute on a standard computer for 80 taxa.


2021 ◽  
Author(s):  
Zhi Yan ◽  
Zhen Cao ◽  
Yushu Liu ◽  
Huw A Ogilvie ◽  
Luay Nakhleh

Abstract Phylogenetic networks provide a powerful framework for modeling and analyzing reticulate evolutionary histories. While polyploidy has been shown to be prevalent not only in plants but also in other groups of eukaryotic species, most work done thus far on phylogenetic network inference assumes diploid hybridization. These inference methods have been applied, with varying degrees of success, to data sets with polyploid species, even though polyploidy violates the mathematical assumptions underlying these methods. Statistical methods were developed recently for handling specific types of polyploids and so were parsimony methods that could handle polyploidy more generally yet while excluding processes such as incomplete lineage sorting. In this paper, we introduce a new method for inferring most parsimonious phylogenetic networks on data that include polyploid species. Taking gene tree topologies as input, the method seeks a phylogenetic network that minimizes deep coalescences while accounting for polyploidy. We demonstrate the performance of the method on both simulated and biological data. The inference method as well as a method for evaluating evolutionary hypotheses in the form of phylogenetic networks are implemented and publicly available in the PhyloNet software package.


2021 ◽  
Author(s):  
Delphine Tanita Tefarikis ◽  
Diego F Morales-Briones ◽  
Ya Yang ◽  
Gerald Edwards ◽  
Gudrun Kadereit

C2 photosynthesis is characterized by recapturing photorespiratory CO2 by RuBisCO in Kranz-like cells and is therefore physiologically intermediate between C3 and C4 photosynthesis. C2 is either interpreted as an evolutionary precursor of C4 or as the result of hybridization between a C3 and C4 lineage. We compared the expression of photosynthetic traits among populations of the Salsola divaricata agg. (C2) from humid subtropical to arid habitats on the coasts of the Canary Islands and Morocco, and subjected them to salt and drought treatments. We screened for enhanced C4-like expression of traits related to habitat or treatment. We estimated species trees with a transcriptome dataset of Salsoleae and explored patterns of gene tree discordance. With phylogenetic networks and hybridization analyses we tested for hybrid origin of the Salsola divaricata agg. We observed independent variation of photosynthetic traits within and among populations and no clear evidence for selection towards C4-like trait expression in more stressful habitats or treatments. We found reticulation and gene tree incongruencies in the Salsoleae supporting a putative hybrid origin of the Salsola divaricata agg. C2 photosynthesis in the Salsola divaricata agg. combines traits inherited from its C3 and C4 parental lineages and seems well adapted to a wide climatic amplitude.


2021 ◽  
Vol 17 (9) ◽  
pp. e1008380
Author(s):  
Charles-Elie Rabier ◽  
Vincent Berry ◽  
Marnus Stoltz ◽  
João D. Santos ◽  
Wensheng Wang ◽  
...  

For various species, high quality sequences and complete genomes are nowadays available for many individuals. This makes data analysis challenging, as methods need not only to be accurate, but also time efficient given the tremendous amount of data to process. In this article, we introduce an efficient method to infer the evolutionary history of individuals under the multispecies coalescent model in networks (MSNC). Phylogenetic networks are an extension of phylogenetic trees that can contain reticulate nodes, which allow to model complex biological events such as horizontal gene transfer, hybridization and introgression. We present a novel way to compute the likelihood of biallelic markers sampled along genomes whose evolution involved such events. This likelihood computation is at the heart of a Bayesian network inference method called SnappNet, as it extends the Snapp method inferring evolutionary trees under the multispecies coalescent model, to networks. SnappNet is available as a package of the well-known beast 2 software. Recently, the MCMC_BiMarkers method, implemented in PhyloNet, also extended Snapp to networks. Both methods take biallelic markers as input, rely on the same model of evolution and sample networks in a Bayesian framework, though using different methods for computing priors. However, SnappNet relies on algorithms that are exponentially more time-efficient on non-trivial networks. Using simulations, we compare performances of SnappNet and MCMC_BiMarkers. We show that both methods enjoy similar abilities to recover simple networks, but SnappNet is more accurate than MCMC_BiMarkers on more complex network scenarios. Also, on complex networks, SnappNet is found to be extremely faster than MCMC_BiMarkers in terms of time required for the likelihood computation. We finally illustrate SnappNet performances on a rice data set. SnappNet infers a scenario that is consistent with previous results and provides additional understanding of rice evolution.


Sign in / Sign up

Export Citation Format

Share Document