normal network
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 15)

H-INDEX

4
(FIVE YEARS 0)

2022 ◽  
Vol 84 (2) ◽  
Author(s):  
Stephen J. Willson

AbstractAs phylogenetic networks grow increasingly complicated, systematic methods for simplifying them to reveal properties will become more useful. This paper considers how to modify acyclic phylogenetic networks into other acyclic networks by contracting specific arcs that include a set D. The networks need not be binary, so vertices in the networks may have more than two parents and/or more than two children. In general, in order to make the resulting network acyclic, additional arcs not in D must also be contracted. This paper shows how to choose D so that the resulting acyclic network is “pre-normal”. As a result, removal of all redundant arcs yields a normal network. The set D can be selected based only on the geometry of the network, giving a well-defined normal phylogenetic network depending only on the given network. There are CSD maps relating most of the networks. The resulting network can be visualized as a “wired lift” in the original network, which appears as the original network with each arc drawn in one of three ways.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Michele Russo ◽  
Nedim Šrndić ◽  
Pavel Laskov

AbstractIllicit cryptocurrency mining has become one of the prevalent methods for monetization of computer security incidents. In this attack, victims’ computing resources are abused to mine cryptocurrency for the benefit of attackers. The most popular illicitly mined digital coin is Monero as it provides strong anonymity and is efficiently mined on CPUs.Illicit mining crucially relies on communication between compromised systems and remote mining pools using the de facto standard protocol Stratum. While prior research primarily focused on endpoint-based detection of in-browser mining, in this paper, we address network-based detection of cryptomining malware in general. We propose XMR-Ray, a machine learning detector using novel features based on reconstructing the Stratum protocol from raw NetFlow records. Our detector is trained offline using only mining traffic and does not require privacy-sensitive normal network traffic, which facilitates its adoption and integration.In our experiments, XMR-Ray attained 98.94% detection rate at 0.05% false alarm rate, outperforming the closest competitor. Our evaluation furthermore demonstrates that it reliably detects previously unseen mining pools, is robust against common obfuscation techniques such as encryption and proxies, and is applicable to mining in the browser or by compiled binaries. Finally, by deploying our detector in a large university network, we show its effectiveness in protecting real-world systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mu Bie ◽  
Haoyu Ma

With the gradual increase of malicious mining, a large amount of computing resources are wasted, and precious power resources are consumed maliciously. Many detection methods to detect malicious mining behavior have been proposed by scholars, but most of which have pure defects and need to collect sensitive data (such as memory and register data) from the detected host. In order to solve these problems, a malicious mining detection system based on network timing signals is proposed. When capturing network traffic, the system does not need to know the contents of data packets but only collects network flow timing signals, which greatly protects the privacy of users. Besides, we use the campus network to carry out experiments, collect a large amount of network traffic data generated by mining behavior, and carry out feature extraction and data cleaning. We also collect traffic data of normal network behavior and combine them after labeling. Then, we use four machine learning algorithms for classification. The final results show that our detection system can effectively distinguish the normal network traffic and the network traffic generated by mining behavior.


2021 ◽  
Vol 10 (3) ◽  
pp. 58
Author(s):  
Christiana Ioannou ◽  
Vasos Vassiliou

Machine learning (ML) techniques learn a system by observing it. Events and occurrences in the network define what is expected of the network’s operation. It is for this reason that ML techniques are used in the computer network security field to detect unauthorized intervention. In the event of suspicious activity, the result of the ML analysis deviates from the definition of expected normal network activity and the suspicious activity becomes apparent. Support vector machines (SVM) are ML techniques that have been used to profile normal network activity and classify it as normal or abnormal. They are trained to configure an optimal hyperplane that classifies unknown input vectors’ values based on their positioning on the plane. We propose to use SVM models to detect malicious behavior within low-power, low-rate and short range networks, such as those used in the Internet of Things (IoT). We evaluated two SVM approaches, the C-SVM and the OC-SVM, where the former requires two classes of vector values (one for the normal and one for the abnormal activity) and the latter observes only normal behavior activity. Both approaches were used as part of an intrusion detection system (IDS) that monitors and detects abnormal activity within the smart node device. Actual network traffic with specific network-layer attacks implemented by us was used to create and evaluate the SVM detection models. It is shown that the C-SVM achieves up to 100% classification accuracy when evaluated with unknown data taken from the same network topology it was trained with and 81% accuracy when operating in an unknown topology. The OC-SVM that is created using benign activity achieves at most 58% accuracy.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yongjin Hu ◽  
Jin Tian ◽  
Jun Ma

Network traffic classification technologies could be used by attackers to implement network monitoring and then launch traffic analysis attacks or website fingerprint attacks. In order to prevent such attacks, a novel way to generate adversarial samples of network traffic from the perspective of the defender is proposed. By adding perturbation to the normal network traffic, a kind of adversarial network traffic is formed, which will cause misclassification when the attackers are implementing network traffic classification with deep convolutional neural networks (CNN) as a classification model. The paper uses the concept of adversarial samples in image recognition for reference to the field of network traffic classification and chooses several different methods to generate adversarial samples of network traffic. The experiment, in which the LeNet-5 CNN is selected as a classification model used by attackers and Vgg16 CNN is selected as the model to test the transferability of the adversarial network traffic generated, shows the effect of the adversarial network traffic samples.


2021 ◽  
Author(s):  
Michele Russo ◽  
Nedim Šrndić ◽  
Pavel Laskov

Abstract Illicit cryptocurrency mining has become one of the prevalent methods for monetization of computer security incidents. In this attack, victims' computing resources are abused to mine cryptocurrency for the benefit of attackers. The most popular illicitly mined digital coin is Monero as it provides strong anonymity and is efficiently mined on CPUs. Illicit mining crucially relies on communication between compromised systems and remote mining pools using the de facto standard protocol Stratum. While prior research primarily focused on endpoint-based detection of in-browser mining, in this paper we address network-based detection of cryptomining malware in general. We propose XMR-Ray, a machine learning detector using novel features based on reconstructing the Stratum protocol from raw NetFlow records. Our detector is trained offline using only mining traffic and does not require privacy-sensitive normal network traffic, which facilitates its adoption and integration. In our experiments, XMR-Ray attained 98.94% detection rate at 0.05% false alarm rate, outperforming the closest competitor. Our evaluation furthermore demonstrates that it reliably detects previously unseen mining pools, is robust against common obfuscation techniques such as encryption and proxies, and is applicable to mining in the browser or by compiled binaries. Finally, by deploying our detector in a large university network, we show its effectiveness in protecting real-world systems.


Author(s):  
Qozeem Adeniyi Adeshina ◽  
Baidya Nath Saha

The IT space is growing in all aspects ranging from bandwidth, storage, processing speed, machine learning and data analysis. This growth has consequently led to more cyber threat and attacks which now requires innovative and predictive security approach that uses cutting-edge technologies in order to fight the menace. The patterns of the cyber threats will be observed so that proper analysis from different sets of data will be used to develop a model that will depend on the available data. Distributed Denial of Service is one of the most common threats and attacks that is ravaging computing devices on the internet. This research talks about the approaches and the development of machine learning classifiers to detect DDoS attacks before it eventually happen. The model is built with seven different selection techniques each using ten machine learning classifiers. The model learns to understand the normal network traffic so that it can detect an ICMP, TCP and UDP DDoS traffic when they arrive. The goal is to build a data-driven, intelligent and decision-making machine learning algorithm model that will use classifiers to categorize normal and DDoS traffic using KDD-99 dataset. Results have shown that some classifiers have very good predictions obtained within a very short time.


Author(s):  
Saif Alzubi ◽  
Frederic T. Stahl ◽  
Mohamed M. Gaber

Advances in telecommunication network technologies have led to an ever more interconnected world. Accordingly, the types of threats and attacks to intrude or disable such networks or portions of it are continuing to develop likewise. Thus, there is a need to detect previously unknown attack types. Supervised techniques are not suitable to detect previously not encountered attack types. This paper presents a new ensemble-based Unknown Network Attack Detector (UNAD) system. UNAD proposes a training workflow composed of heterogeneous and unsupervised anomaly detection techniques, trains on attack-free data and can distinguish normal network flow from (previously unknown) attacks. This scenario is more realistic for detecting previously unknown attacks than supervised approaches and is evaluated on telecommunication network data with known ground truth. Empirical results reveal that UNAD can detect attacks on which the workflows have not been trained on with a precision of 75% and a recall of 80%. The benefit of UNAD with existing network attack detectors is, that it can detect completely new attack types that have never been encountered before.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1140
Author(s):  
Eva Papadogiannaki ◽  
Sotiris Ioannidis

More than 75% of Internet traffic is now encrypted, and this percentage is constantly increasing. The majority of communications are secured using common encryption protocols such as SSL/TLS and IPsec to ensure security and protect the privacy of Internet users. However, encryption can be exploited to hide malicious activities, camouflaged into normal network traffic. Traditionally, network traffic inspection is based on techniques like deep packet inspection (DPI). Common applications for DPI include but are not limited to firewalls, intrusion detection and prevention systems, L7 filtering, and packet forwarding. With the widespread adoption of network encryption though, DPI tools that rely on packet payload content are becoming less effective, demanding the development of more sophisticated techniques in order to adapt to current network encryption trends. In this work, we present HeaderHunter, a fast signature-based intrusion detection system even for encrypted network traffic. We generate signatures using only network packet metadata extracted from packet headers. In addition, we examine the processing acceleration of the intrusion detection engine using different heterogeneous hardware architectures.


10.37236/9128 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Janosch Döcker ◽  
Simone Linz ◽  
Charles Semple

Phylogenetic networks are leaf-labelled directed acyclic graphs that are used in computational biology to analyse and represent the evolutionary relationships of a set of species or viruses. In contrast to phylogenetic trees, phylogenetic networks have vertices of in-degree at least two that represent reticulation events such as hybridisation, lateral gene transfer, or reassortment. By systematically deleting various combinations of arcs in a phylogenetic network $\mathcal N$, one derives a set of phylogenetic trees that are embedded in $\mathcal N$. We recently showed that the problem of deciding if two binary phylogenetic networks embed the same set of phylogenetic trees is computationally hard, in particular, we showed it to be $\Pi^P_2$-complete. In this paper, we establish a polynomial-time algorithm for this decision problem if the initial two networks consist of a normal network and a tree-child network; two well-studied topologically restricted subclasses of phylogenetic networks, with normal networks being more structurally constrained than tree-child networks. The running time of the algorithm is quadratic in the size of the leaf sets.


Sign in / Sign up

Export Citation Format

Share Document