time existence
Recently Published Documents


TOTAL DOCUMENTS

255
(FIVE YEARS 76)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Jan Knappmann ◽  
Henrik Schumacher ◽  
Daniel Steenebrügge ◽  
Heiko von der Mosel

Abstract We establish long-time existence for a projected Sobolev gradient flow of generalized integral Menger curvature in the Hilbert case and provide C 1 , 1 C^{1,1} -bounds in time for the solution that only depend on the initial curve. The self-avoidance property of integral Menger curvature guarantees that the knot class of the initial curve is preserved under the flow, and the projection ensures that each curve along the flow is parametrized with the same speed as the initial configuration. Finally, we describe how to simulate this flow numerically with substantially higher efficiency than in the corresponding numerical L 2 L^{2} gradient descent or other optimization methods.


2021 ◽  
pp. 1-35
Author(s):  
Nakao Hayashi ◽  
Elena I. Kaikina ◽  
Pavel I. Naumkin ◽  
Takayoshi Ogawa

We study the nonlinear Neumann boundary value problem for semilinear heat equation ∂ t u − Δ u = λ | u | p , t > 0 , x ∈ R + n , u ( 0 , x ) = ε u 0 ( x ) , x ∈ R + n , − ∂ x u ( t , x ′ , 0 ) = γ | u | q ( t , x ′ , 0 ) , t > 0 , x ′ ∈ R n − 1 where p = 1 + 2 n , q = 1 + 1 n and ε > 0 is small enough. We investigate the life span of solutions for λ , γ > 0. Also we study the global in time existence and large time asymptotic behavior of solutions in the case of λ , γ < 0 and ∫ R + n u 0 ( x ) d x > 0.


Author(s):  
Tsz-Kiu Aaron Chow

Abstract In this paper, we study the Ricci flow on manifolds with boundary. In the paper, we substantially improve Shen’s result [Y. Shen, On Ricci deformation of a Riemannian metric on manifold with boundary, Pacific J. Math. 173 1996, 1, 203–221] to manifolds with arbitrary initial metric. We prove short-time existence and uniqueness of the solution, in which the boundary becomes instantaneously totally geodesic for positive time. Moreover, we prove that the flow we constructed preserves natural boundary conditions. More specifically, if the initial metric has a convex boundary, then the flow preserves positive curvature operator and the PIC1, PIC2 conditions. Moreover, if the initial metric has a two-convex boundary, then the flow preserves the PIC condition.


2021 ◽  
Vol 18 (03) ◽  
pp. 729-760
Author(s):  
Tuan Anh Dao ◽  
Hiroshi Takeda

In this paper, we consider the Cauchy problem for semi-linear wave equations with structural damping term [Formula: see text], where [Formula: see text] is a constant. As is now well known, the linear principal part brings both the diffusion phenomenon and the regularity loss of solutions. This implies that, for the nonlinear problems, the choice of solution spaces plays an important role to obtain the global solutions with the sharp decay properties in time. Our main purpose in this paper is to prove the global (in time) existence of solutions for the small data and their decay properties for the supercritical nonlinearities.


Author(s):  
Anh Tuan Nguyen ◽  
Tomás Caraballo ◽  
Nguyen Huy Tuan

In this study, we investigate the intial value problem (IVP) for a time-fractional fourth-order equation with nonlinear source terms. More specifically, we consider the time-fractional biharmonic with exponential nonlinearity and the time-fractional Cahn–Hilliard equation. By using the Fourier transform concept, the generalized formula for the mild solution as well as the smoothing effects of resolvent operators are proved. For the IVP associated with the first one, by using the Orlicz space with the function $\Xi (z)={\textrm {e}}^{|z|^{p}}-1$ and some embeddings between it and the usual Lebesgue spaces, we prove that the solution is a global-in-time solution or it shall blow up in a finite time if the initial value is regular. In the case of singular initial data, the local-in-time/global-in-time existence and uniqueness are derived. Also, the regularity of the mild solution is investigated. For the IVP associated with the second one, some modifications to the generalized formula are made to deal with the nonlinear term. We also establish some important estimates for the derivatives of resolvent operators, they are the basis for using the Picard sequence to prove the local-in-time existence of the solution.


2021 ◽  
Vol 80 (1) ◽  
pp. 23-52
Author(s):  
Dai-Ni Hsieh ◽  
Sylvain Arguillère ◽  
Nicolas Charon ◽  
Laurent Younes

This paper studies a longitudinal shape transformation model in which shapes are deformed in response to an internal growth potential that evolves according to an advection reaction diffusion process. This model extends prior works that considered a static growth potential, i.e., the initial growth potential is only advected by diffeomorphisms. We focus on the mathematical study of the corresponding system of coupled PDEs describing the joint dynamics of the diffeomorphic transformation together with the growth potential on the moving domain. Specifically, we prove the uniqueness and long time existence of solutions to this system with reasonable initial and boundary conditions as well as regularization on deformation fields. In addition, we provide a few simple simulations of this model in the case of isotropic elastic materials in 2D.


Author(s):  
Ke Feng ◽  
Huabin Ge ◽  
Bobo Hua ◽  
Xu Xu

Abstract In this paper, we adopt combinatorial Ricci flow to study the existence of hyperbolic structure on cusped 3-manifolds. The long-time existence and the uniqueness for the extended combinatorial Ricci flow are proven for general pseudo 3-manifolds. We prove that the extended combinatorial Ricci flow converges to a decorated hyperbolic polyhedral metric if and only if there exists a decorated hyperbolic polyhedral metric of zero Ricci curvature, and the flow converges exponentially fast in this case. For an ideally triangulated cusped 3-manifold admitting a complete hyperbolic metric, the flow provides an effective algorithm for finding the hyperbolic metric.


Sign in / Sign up

Export Citation Format

Share Document