The dynamic characteristics of the system that includes the controlled object and the regulator largely depend on the choice of the control law, which is determined based on the nominal values of the parameters of the mathematical model of the stabilization process and its priority indicator. Due to the deviation of the missile parameters and, accordingly, the model from the nominal values, the designers set the safety factors based on the most unfavorable conditions, which negatively affects the overall performance, in particular, the relative weight of the payload. Therefore, there is a need to develop algorithms for adjustment that is identification model parameters during the flight using the signals of measuring devices and the capabilities of on-board computers. This will increase the efficiency of methods of choosing the control law based on such indicators as stabilization accuracy, stability margin and power requirements of the actuator. The aim of the article is to develop methods for refining the parameters of the rocket stabilization system in the yawing plane, which are based on the use of current data of measuring devices of the part of coordinates of the state vector, and verify the effectiveness of refinement in terms of the above indicators. A linear stationary model of a system for stabilizing the perturbed motion of a rocket taking into account the inertia of the actuator in the form of ordinary fifth-order differential equations is adopted. Two approaches are proposed to approximate the model parameters to their actual values. In the first in the model parameter space there is a minimum of the integral of the distance between the points of the trajectory according to the signals of the measuring devices and the trajectory obtained by modeling the perturbation compensation process. In the second, the actual values of the parameters are the result of solving a system of nonlinear equations, which includes data from measuring devices and the corresponding data obtained by simulation. On the example of space rocket parameters it is shown that the choice of the control law based on the actual coefficients of the model leads to a significant reduction of deviations from the set value of the system stability margin, stabilization error and power of the actuator.