Multiloop Multirate Continuous‐Discrete Drone Stabilization System: An Equivalent Single‐Rate Model
The article discusses the UAV lateral motion stabilization system, as a MIMO multiloop multirate continuous-discrete system, specified in the form of an input–output model in the domain of discrete Laplace transform or in the form of a structural diagram. Approaches to the construction of equivalent T and NT single-rate models for MIMO multiloop multirate continuous-discrete systems are considered. Here, T is the largest common divisor of the sampling periods of the system, N is a natural number that is the smallest common multiple of the numbers characterizing the sampling periods of the system. The resulting impulse representations of the outputs of equivalent models are in the form of rational functions. The basis for the construction of these models is a matrix of sampling densities—a structural invariant of sampling chains. An example of the construction of the indicated matrix and an equivalent single-rate model are given. Obtaining equivalent single-rate models for MIMO multiloop multirate systems allows us to extend the methods of research and synthesis of MIMO continuous and continuous-discrete systems to a common theoretical base—the theory of polynomials and rational functions, which are typical elements of the description of these classes of systems.