propyl gallate
Recently Published Documents


TOTAL DOCUMENTS

344
(FIVE YEARS 26)

H-INDEX

32
(FIVE YEARS 1)

Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 30
Author(s):  
Yuji Tanaka ◽  
Makoto Tsuneoka

We previously reported that lysine-demethylase 2A (KDM2A), a Jumonji-C histone demethylase, is activated by gallic acid to reduce H3K36me2 levels in the rRNA gene promoter and consequently inhibit rRNA transcription and cell proliferation in the breast cancer cell line MCF-7. Gallic acid activates AMP-activated protein kinase (AMPK) and increases reactive oxygen species (ROS) production to activate KDM2A. Esters of gallic acid, propyl gallate (PG) and epigallocatechin gallate (EGCG), and other chemicals, reduce cancer cell proliferation. However, whether these compounds activate KDM2A has yet to be tested. In this study, we found that PG and EGCG decreased rRNA transcription and cell proliferation through KDM2A in MCF-7 cells. The activation of both AMPK and ROS production by PG or EGCG was required to activate KDM2A. Of note, while the elevation of ROS production by PG or EGCG was limited in time, it was sufficient to activate KDM2A. Importantly, the inhibition of rRNA transcription and cell proliferation by gallic acid, PG, or EGCG was specifically observed in MCF-7 cells, whereas it was not observed in non-tumorigenic MCF10A cells. Altogether, these results suggest that the derivatization of gallic acid may be used to obtain new compounds with anti-cancer activity.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2350
Author(s):  
Dahye Kim ◽  
Palaniselvam Kuppusamy ◽  
Jeong Sung Jung ◽  
Kyoung Hoon Kim ◽  
Ki Choon Choi

Plant secondary metabolite (PSM) degradations and feed breakdown into small particles may occur primarily in the rumen. It is possible to predict the rate and extent of feed disappearance in the rumen during incubation by different in vitro techniques, which differ based on the PSM structures, including phenolics, and flavonoids. However, PSM degradation and conversion efficiency in the rumen remains unclear. This study’s objective was to evaluate the in vitro degradation of a group of PSMs in the rumen fluid, collected from Hanwoo steer samples. PSMs including rutin, vitexin, myricetin, p-coumaric acid, ferulic acid, caffeic acid, quercetin, luteolin, propyl gallate, and kaempferol were used in their pure forms at 1mg/250 mL in a rumen fluid buffer system. The mixture of selected PSMs and buffer was incubated at 39 °C for 12–72 h, and samples were collected every 12 h and analyzed by a high-performance liquid chromatography-diode array detector (HPLC-DAD) to determine the biotransformation of the polyphenolics. The results revealed that the luteolin, ferulic acid, caffeic acid, coumaric acid, rutin, myricetin, vitexin, kaempferol, and quercetin were decreased after 12 h of incubation in the rumen fluid (p ≤ 0.05) and were more than 70% decreased at 72 h. In contrast, the propyl gallate concentrations were not significantly changed after 24 h of incubation in rumen fluid compared to other metabolites. Finally, microbial dynamics study showed that the Firmicutes, Bacterodetes, Actinobacteria, and Syngergistetes were the dominant phyla found in rumen fluids. The data suggest that most polyphenolic compounds may degrade or reform new complex structures in the rumen.


2021 ◽  
Vol 14 (7) ◽  
pp. 696
Author(s):  
Fakhara Sabir ◽  
Gábor Katona ◽  
Ruba Ismail ◽  
Bence Sipos ◽  
Rita Ambrus ◽  
...  

The objective of the present study was to develop n-propyl gallate-loaded solid lipid nanoparticles (PG-SLNs) in a hydrogel (HG) formulation using Transcutol-P (TC-P) as a permeation enhancer. Modified solvent injection technique was applied to produce optimized PG-SLNs via the Quality by Design approach and central composite design. The in vitro mucoadhesion, scavenging activity, drug release, permeation studies of PG from PG-SLNs-loaded HG were evaluated under simulated nasal conditions. Compared with in vitro release behavior of PG from SLNs, the drug release from the PG-SLNs-loaded HG showed a lower burst effect and sustained release profile. The cumulative permeation of PG from PG-SLNs-loaded HG with TC-P was 600 μg/cm2 within 60 min, which is 3–60-fold higher than PG-SLNs and native PG, respectively. Raman mapping showed that the distribution of PG-SLNs was more concentrated in HG having lower concentrations of hyaluronic acid. The scavenging assay demonstrated increased antioxidant activity at higher concentrations of HG. Due to enhanced stability and mucoadhesive properties, the developed HG-based SLNs can improve nasal absorption by increasing residence time on nasal mucosa. This study provides in vitro proof of the potential of combining the advantages of SLNs and HG for the intranasal delivery of antioxidants.


Molbank ◽  
10.3390/m1201 ◽  
2021 ◽  
Vol 2021 (2) ◽  
pp. M1201
Author(s):  
Van Hai Nguyen ◽  
Minh Ngoc Le ◽  
Hoa Binh Nguyen ◽  
Kieu Oanh Ha ◽  
Thai Ha Van Pham ◽  
...  

The title compound, propyl gallate (III), is an important substance popularly used in the food, cosmetic and pharmaceutical industries. Current chemical syntheses of this compound are based on the acylation supported by thionyl chloride, DIC/DMAP or Fischer esterification using a range of homogenous and heterogenous catalysts. In this paper, an efficient, green, straightforward, and economical method for synthesizing propyl gallate using potassium hydrogen sulfate, KHSO4, as the heterogenous acidic catalyst has been developed for the first time. In addition, this paper provides a comprehensive spectral dataset for the title compound, especially the new data on DEPT and 2D NMR (HSQC and HMBC) spectra which are not currently available in the literature.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1429
Author(s):  
Fakhara Sabir ◽  
Gábor Katona ◽  
Edina Pallagi ◽  
Dorina Gabriella Dobó ◽  
Hussein Akel ◽  
...  

The present study aimed to develop n-propyl gallate (PG)-encapsulated liposomes through a novel direct pouring method using the quality-by-design (QbD) approach. A further aim was to coat liposomes with hyaluronic acid (HA) to improve the stability of the formulation in nasal mucosa. The QbD method was used for the determination of critical quality attributes in the formulation of PG-loaded liposomes coated with HA. The optimized formulation was determined by applying the Box–Behnken design to investigate the effect of composition and process variables on particle size, polydispersity index (PDI), and zeta potential. Physiochemical characterization, in vitro release, and permeability tests, as well as accelerated stability studies, were performed with the optimized liposomal formulation. The optimized formulation resulted in 90 ± 3.6% encapsulation efficiency, 167.9 ± 3.5 nm average hydrodynamic diameter, 0.129 ± 0.002 PDI, and −33.9 ± 4.5 zeta potential. Coated liposomes showed significantly improved properties in 24 h in an in vitro release test (>60%), in vitro permeability measurement (420 μg/cm2) within 60 min, and also in accelerated stability studies compared to uncoated liposomes. A hydrogen-peroxide-scavenging assay showed improved stability of PG-containing liposomes. It can be concluded that the optimization of PG-encapsulated liposomes coated with HA has great potential for targeting several brain diseases.


Sign in / Sign up

Export Citation Format

Share Document