Ethyl glycinate was synthesized by the Fischer esterification protocol, and its amide derivatives; 2-amino-N-(nitrophenyl)acetamide 31, 2-amino-N-(6-methylpyridin-2-yl) acetamide 33, N,N'-(1,4-phenylene)bis-(2-aminoacetamide) 35, N,N'-(6-chloropyrimidine-2,4-diyl)bis-(2-aminoacetamide) 37, and 2,4-(diamino-N’N-6-hydroxypyrimidyl)acetamide 39 respectively were obtained by coupling reactions of 4-nitroaniline, 2-amino-6-methylpyridine, 1,4-diamino-N,N’-benzene, 2,6-diamino-4-chloropyrimidine and 2,4-diamino-6-hydroxypyrimidine respectively with ethyl glycinate. These compounds were characterized on the basis of their melting points, UV-Visible, IR, 1HNMR and 13CNMR spectroscopic analyses. The results obtained from the spectra were consistence with the assigned structures of the compounds. The synthesized compounds were subjected to molecular docking with a target protein, 1CVU to compare their binding energies with celecoxib and rofecoxib which are standard drugs that inhibit COX2 enzyme. From the docking results, the binding energies values of the above synthesized compounds are -5.8 kJmol-1, -6.2 kJmol-1, -7.2 kJmol-1, -7.4 kJmol-1 and -7.6 kJmol-1 respectively. Compound 39 showed the highest binding energy of -7.6 kJmol-1, close to celecoxib and rofecoxib with binding energy values of -8.0 kJmol-1 and -8.2 kJmol-1 respectively. This result indicates that compound 39 possess some level of inhibitory activity against COX2.