isometric action
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 1)

2019 ◽  
pp. 1-19
Author(s):  
Omer Lavy

We study isometric actions of Steinberg groups on Hadamard manifolds. We prove some rigidity properties related to these actions. In particular, we show that every isometric action of [Formula: see text] on Hadamard manifold when [Formula: see text] factors through a finite quotient. We further study actions on infinite-dimensional manifolds and prove a fixed-point theorem related to such actions.


2019 ◽  
Vol 22 (2) ◽  
pp. 313-345 ◽  
Author(s):  
Anthony Genevois

Abstract In this article, we state and prove a general criterion allowing us to show that some groups are hyperbolically elementary, meaning that every isometric action of one of these groups on a Gromov-hyperbolic space either fixes a point at infinity, or stabilises a pair of points at infinity, or has bounded orbits. Also, we show how such a hyperbolic rigidity leads to fixed-point properties on finite-dimensional CAT(0) cube complexes. As an application, we prove that Thompson’s group V is hyperbolically elementary, and we deduce that it satisfies Property {({\rm FW}_{\infty})} , i.e., every isometric action of V on a finite-dimensional CAT(0) cube complex fixes a point. It provides the first example of a (finitely presented) group acting properly on an infinite-dimensional CAT(0) cube complex such that all its actions on finite-dimensional CAT(0) cube complexes have global fixed points.


2018 ◽  
Vol 2018 (745) ◽  
pp. 281-293 ◽  
Author(s):  
Pablo Ramacher

Abstract Let M be a closed Riemannian manifold carrying an effective and isometric action of a compact connected Lie group G. We derive a refined remainder estimate in the stationary phase approximation of certain oscillatory integrals on T^{\ast}M\times G with singular critical sets that were examined in [7] in order to determine the asymptotic distribution of eigenvalues of an invariant elliptic operator on M. As an immediate consequence, we deduce from this an asymptotic multiplicity formula for families of irreducible representations in \mathrm{L}^{2}(M) . The improved remainder is used in [4] to prove an equivariant semiclassical Weyl law and a corresponding equivariant quantum ergodicity theorem.


2018 ◽  
Vol 12 (02) ◽  
pp. 267-292
Author(s):  
Romain Tessera ◽  
Alain Valette

A locally compact group [Formula: see text] has property PL if every isometric [Formula: see text]-action either has bounded orbits or is (metrically) proper. For [Formula: see text], say that [Formula: see text] has property BPp if the same alternative holds for the smaller class of affine isometric actions on [Formula: see text]-spaces. We explore properties PL and BPp and prove that they are equivalent for some interesting classes of groups: abelian groups, amenable almost connected Lie groups, amenable linear algebraic groups over a local field of characteristic 0. The appendix provides new examples of groups with property PL, including nonlinear ones.


2016 ◽  
Vol 26 (07) ◽  
pp. 1283-1321
Author(s):  
Shane O. Rourke

Let [Formula: see text] be an ordered abelian group. We show how a group admitting a free affine action without inversions on a [Formula: see text]-tree admits a natural graph of groups decomposition, where vertex groups inherit actions on [Formula: see text]-trees. We introduce a stronger condition (essential freeness) on an affine action and apply recent work of various authors to deduce that a finitely generated group admitting an essentially free affine action on a [Formula: see text]-tree is relatively hyperbolic with nilpotent parabolics, is locally relatively quasiconvex, and has solvable word, conjugacy and isomorphism problems. Conversely, given a graph of groups satisfying certain conditions, we show how an affine action of its fundamental group can be constructed. Specialising to the case of free affine actions, we obtain a large class of groups that have a free affine action on a [Formula: see text]-tree but that do not act freely by isometries on any [Formula: see text]-tree. We also give an example of a group that admits a free isometric action on a [Formula: see text]-tree but which is not residually nilpotent.


2015 ◽  
Vol 37 (3) ◽  
pp. 939-970 ◽  
Author(s):  
RUSSELL RICKS

Let$X$be a proper, geodesically complete CAT($0$) space under a proper, non-elementary, isometric action by a group$\unicode[STIX]{x1D6E4}$with a rank one element. We construct a generalized Bowen–Margulis measure on the space of unit-speed parametrized geodesics of$X$modulo the$\unicode[STIX]{x1D6E4}$-action. Although the construction of Bowen–Margulis measures for rank one non-positively curved manifolds and for CAT($-1$) spaces is well known, the construction for CAT($0$) spaces hinges on establishing a new structural result of independent interest: almost no geodesic, under the Bowen–Margulis measure, bounds a flat strip of any positive width. We also show that almost every point in$\unicode[STIX]{x2202}_{\infty }X$, under the Patterson–Sullivan measure, is isolated in the Tits metric. (For these results we assume the Bowen–Margulis measure is finite, as it is in the cocompact case.) Finally, we precisely characterize mixing when$X$has full limit set: a finite Bowen–Margulis measure is not mixing under the geodesic flow precisely when$X$is a tree with all edge lengths in$c\mathbb{Z}$for some$c>0$. This characterization is new, even in the setting of CAT($-1$) spaces. More general (technical) versions of these results are also stated in the paper.


2014 ◽  
Vol 06 (01) ◽  
pp. 75-105 ◽  
Author(s):  
Benben Liao

We extend Vincent Lafforgue's results to Sp4. As applications, the family of expanders constructed by finite quotients of a lattice in such a group does not admit a uniform embedding in any Banach space of type > 1, and any affine isometric action of such a group, or of any cocompact lattice in it, in a Banach space of type > 1 has a fixed point.


2013 ◽  
Vol 23 (02) ◽  
pp. 217-253 ◽  
Author(s):  
SHANE O. ROURKE

We initiate the study of affine actions of groups on Λ-trees for a general ordered abelian group Λ; these are actions by dilations rather than isometries. This gives a common generalization of isometric action on a Λ-tree, and affine action on an ℝ-tree as studied by Liousse. The duality between based length functions and actions on Λ-trees is generalized to this setting. We are led to consider a new class of groups: those that admit a free affine action on a Λ-tree for some Λ. Examples of such groups are presented, including soluble Baumslag–Solitar groups and the discrete Heisenberg group.


Sign in / Sign up

Export Citation Format

Share Document