gradient vector flow
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 21)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Xiaoteng Zhu ◽  
Ke Cheng ◽  
Qingfang Chen ◽  
Yuanquan Wang ◽  
Ziyang Zhang

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xing Huang ◽  
Haozhi Zhu ◽  
Jiexin Wang

This paper intends to explore the effect of the enhanced snake variable model in the segmentation of cardiac ultrasound images and its adoption in quantitative measurement of cardiac cavity. First, the basic principles of the traditional snake model and the gradient vector flow (GVF) snake model are explained. Then, an ellipsoid model is constructed to obtain the initial contour of the heart based on the three-dimensional volume of cardiac ultrasound image, and a discretized triangular mesh model is generated. Finally, the vortical gradient vector flow (VGVF) external force field is introduced and combined with the greedy algorithm to process the deformation of the initial ellipsoid contour of the heart. The segmentation effect is quantitatively evaluated regarding the area overlap rate (AOR) and the mean contour distance (MCD). The results show that the VGVF snake model can segment the deep recessed area of the “U-shaped map” in contrast to the traditional snake model and the GVF snake model. After being applied to ultrasonic image segmentation, the VGVF snake model obtains the segmentation result that is close to the doctor’s manual segmentation result, and the average AOR and MCD are 97.4% and 3.2, respectively. The quantitative evaluation of the cardiac cavity is carried out based on the segmentation results, and the measurement of the volume change of the left ventricle within a cardiac cycle is realized. To sum up, VGVF snake model is superior to the traditional snake and GVF snake models in terms of ultrasonic image segmentation, which realizes the three-dimensional segmentation and quantitative calculation of the cardiac cavity.


2021 ◽  
Vol 13 (12) ◽  
pp. 2406
Author(s):  
Jingxin Chang ◽  
Xianjun Gao ◽  
Yuanwei Yang ◽  
Nan Wang

Building boundary optimization is an essential post-process step for building extraction (by image classification). However, current boundary optimization methods through smoothing or line fitting principles are unable to optimize complex buildings. In response to this limitation, this paper proposes an object-oriented building contour optimization method via an improved generalized gradient vector flow (GGVF) snake model and based on the initial building contour results obtained by a classification method. First, to reduce interference from the adjacent non-building object, each building object is clipped via their extended minimum bounding rectangles (MBR). Second, an adaptive threshold Canny edge detection is applied to each building image to detect the edges, and the progressive probabilistic Hough transform (PPHT) is applied to the edge result to extract the line segments. For those cases with missing or wrong line segments in some edges, a hierarchical line segments reconstruction method is designed to obtain complete contour constraint segments. Third, accurate contour constraint segments for the GGVF snake model are designed to quickly find the target contour. With the help of the initial contour and constraint edge map for GGVF, a GGVF force field computation is executed, and the related optimization principle can be applied to complex buildings. Experimental results validate the robustness and effectiveness of the proposed method, whose contour optimization has higher accuracy and comprehensive value compared with that of the reference methods. This method can be used for effective post-processing to strengthen the accuracy of building extraction results.


2021 ◽  
pp. 540-546
Author(s):  
Chenyang Xu ◽  
Jerry L. Prince

TEM Journal ◽  
2020 ◽  
pp. 1348-1356
Author(s):  
Vo Thi Hong Tuyet ◽  
Nguyen Thanh Binh

Energy between curves of image has useful for object contour. The edge map is an important task for recognition. The shape that is found by linking between edges will clearly present the useful information of objects. The aim of medical image segmentation is the representation of a medical image into small pieces. In this process, feature extraction must adapt with edge map completely. This paper proposed a solution for medical image segmentation based on fully convolutional network with gradient vector flow snake in bandelet domain. Our approach depends on decomposition in bandelet domain and reconstruction in contour detection by fully convolutional network combining with gradient vector flow snake. To improve the accuracy of the feature's extraction processing, the proposed method detected the edge map in bandelet domain by using fully convolutional network. And its reconstructed objects contour by using gradient vector flow snake combined with the boundary condition. The results of the proposed method have the segmentation clearly with small details of medical images in high-quality and low-quality cases.


2020 ◽  
Vol 10 (18) ◽  
pp. 6163 ◽  
Author(s):  
Joaquín Rodríguez ◽  
Gilberto Ochoa-Ruiz ◽  
Christian Mata

Medical support systems used to assist in the diagnosis of prostate lesions generally related to prostate segmentation is one of the majors focus of interest in recent literature. The main problem encountered in the diagnosis of a prostate study is the localization of a Regions of Interest (ROI) containing a tumor tissue. In this paper, a new GUI tool based on a semi-automatic prostate segmentation is presented. The main rationale behind this tool and the focus of this article is facilitate the time consuming segmentation process used for annotating images in the clinical practice, enabling the radiologists to use novel and easy to use semi-automatic segmentation techniques instead of manual segmentation. In this work, a detailed specification of the proposed segmentation algorithm using an Active Contour Models (ACM) aided with a Gradient Vector Flow (GVF) component is defined. The purpose is to help the manual segmentation process of the main ROIs of prostate gland zones. Finally, an experimental case of use and a discussion part of the results are presented.


In this paper, the segmentation of cotton leaves from the complex background has been carried out using deformable model. In order to segment, a database of about 300 cotton leaves image was developed. The collected images were resized to 256x256 size. The resized image has been segmented using Adaptive Diffusion Flow (ADF) model. The ADF model has been obtained by replacing the smoothening energy term of gradient vector flow model with active hyper surface harmonic minimal function used to keep away from weak edges leakage. The infinite Laplace function is used to move the deformable model into narrow concave regions. Further, the developed model has been compared with the gradient vector flow and vector field convolution segmentation methods in terms of number of iterations, time taken for segmentation and various performance parameters namely precision, recall, Manhattan, Jaccard, Dice. From the results, it is concluded that the adaptive diffusion flow method is faster and performance parameters are better than the Gradient Vector Flow (GVF) and Vector Field Convolution (VFC) methods.


Sign in / Sign up

Export Citation Format

Share Document