apoptotic signaling
Recently Published Documents


TOTAL DOCUMENTS

769
(FIVE YEARS 123)

H-INDEX

66
(FIVE YEARS 8)

2022 ◽  
Vol 12 ◽  
Author(s):  
Nanxing Yi ◽  
Yilin Mi ◽  
Xiaotong Xu ◽  
Naping Li ◽  
Fan Zeng ◽  
...  

As life expectancy increases, Osteoarthritis (OA) is becoming a more frequently seen chronic joint disease. The main characteristics of OA are loss of articular cartilage, subchondral bone sclerosis, and synovial inflammation. Baicalein (Bai), a traditional Chinese medicine extracted from Scutellaria baicalensis Georgi, has been demonstrated to exert notable anti-inflammatory effects in previous studies, suggesting its potential effect in the treatment of OA. In this study, we first predicted the action targets of Bai, mapped target genes related to OA, identified potential anti-OA targets for Bai, performed gene ontology (GO) enrichment, and KEGG signaling pathway analyses of the action targets, and analyzed the molecular docking of key Bai targets. Additionally, the effect and potential mechanism of Bai against OA were verified in mouse knee OA models induced by destabilized medial meniscus (DMM) surgery. GO and KEGG analyses showed that 19 anti-OA targets were mainly involved in the response to oxidative stress, the response to hypoxia and apoptosis, and the PI3K-Akt and p53 signaling pathways. Molecular docking results indicated that BAX, BCL 2, and Caspase 3 enriched in the apoptotic signaling pathway have high binding affinity with Bai. Validation experiments showed that Bai can significantly attenuate the loss of articular cartilage (OARSI score), suppress synovial inflammation (synovitis score), and ameliorate subchondral bone resorption measured by micro-CT. In addition, Bai notably inhibited the expression of apoptosis-related proteins in articular cartilage (BAX, BCL 2, and Caspase 3). By combining network pharmacology with experimental validation, our study identifies and verifies the importance of the apoptotic signaling pathway in the treatment of OA by Bai. Bai may have promising application and potential therapeutic value in OA treatment.


Author(s):  
Nikita V. Ivanisenko ◽  
Kamil Seyrek ◽  
Laura K. Hillert-Richter ◽  
Corinna König ◽  
Johannes Espe ◽  
...  

2021 ◽  
Vol 25 (Suppl 2) ◽  
pp. S47-54
Author(s):  
Eun-Jeong Cho ◽  
Youngju Choi ◽  
Jiyeon Kim ◽  
Jun Hyun Bae ◽  
Jinkyung Cho ◽  
...  

Purpose: The effects of aerobic exercise training on soleus muscle morphology, mitochondria-mediated apoptotic signaling, and atrophy/hypertrophy signaling in ovariectomized rat skeletal muscle were investigated.Methods: Female Sprague-Dawley rats were divided into control (CON), ovariectomy (OVX), and ovariectomy plus exercise (OVX+EX) groups. After ovarian excision, exercise training was performed using a rat treadmill at 20 m/min, 50 min/day, 5 days/week for 12 weeks. Protein levels of mitochondria-mediated apoptotic signaling and atrophy/hypertrophy signaling in the skeletal muscle (soleus) were examined through western immunoblot analysis.Results: The number of myocytes and myocyte cross-sectional area (CSA) were increased and the extramyocyte space was decreased in the OVX group compared to those in the CON group. However, aerobic exercise training significantly increased myocyte CSA and decreased extramyocyte space in the OVX+EX group compared to those in the OVX group. The protein levels of proapoptotic signaling and muscle atrophy signaling were significantly increased, whereas the protein levels of muscle hypertrophy signaling were significantly decreased in the OVX group compared to that in the CON group. Aerobic exercise training significantly decreased the protein levels of proapoptotic signaling and increased the protein level of antiapoptotic protein in the OVX+EX group compared to that in the OVX group. Aerobic exercise training significantly increased the protein levels of hypertrophy signaling and decreased protein levels of atrophy signaling in the OVX+EX group compared to those in the OVX group.Conclusions: Treadmill exercise improved estrogen deficiency-induced impairment in skeletal muscle remodeling, mitochondria-mediated apoptotic signaling, and atrophy/hypertrophy signaling in skeletal muscle.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ruyi Li ◽  
Xin Song ◽  
Yanan Guo ◽  
Peng Song ◽  
Dongzhu Duan ◽  
...  

Tumor-associated angiogenesis is a key target for anti-cancer therapy. The imbalance between pro-angiogenic and anti-angiogenic signals elicited by tumor cells or tumor microenvironment always results in activating “angiogenic switch”. Tumor angiogenesis functions in multi-aspects of tumor biology, including endothelial cell apoptosis, tumor metastasis, and cancer stem cell proliferation. Numerous studies have indicated the important roles of inexpensive and less toxic natural products in targeting tumor angiogenesis-associated cytokines and apoptotic signaling pathways. Our current knowledge of tumor angiogenesis is based mainly on experiments performed on cells and animals, so we summarized the well-established models for angiogenesis both in vitro and in vivo. In this review, we classified and summarized the anti-angiogenic natural agents (Polyphenols, Polysaccharides, Alkaloids, Terpenoids, Saponins) in targeting various tumor types according to their chemical structures at present, and discussed the mechanistic principles of these natural products on regulating angiogenesis-associated cytokines and apoptotic signaling pathways. This review is to help understanding the recent progress of natural product research for drug development on anti-tumor angiogenesis.


2021 ◽  
Vol 22 (18) ◽  
pp. 9956
Author(s):  
Piotr Wójcik ◽  
Agnieszka Gęgotek ◽  
Neven Žarković ◽  
Elżbieta Skrzydlewska

Although apoptosis of keratinocytes has been relatively well studied, there is a lack of information comparing potentially proapoptotic treatments for healthy and diseased skin cells. Psoriasis is a chronic autoimmune-mediated skin disease manifested by patches of hyperproliferative keratinocytes that do not undergo apoptosis. UVB phototherapy is commonly used to treat psoriasis, although this has undesirable side effects, and is often combined with anti-inflammatory compounds. The aim of this study was to analyze if cannabidiol (CBD), a phytocannabinoid that has anti-inflammatory and antioxidant properties, may modify the proapoptotic effects of UVB irradiation in vitro by influencing apoptotic signaling pathways in donor psoriatic and healthy human keratinocytes obtained from the skin of five volunteers in each group. While CBD alone did not have any major effects on keratinocytes, the UVB treatment activated the extrinsic apoptotic pathway, with enhanced caspase 8 expression in both healthy and psoriatic keratinocytes. However, endoplasmic reticulum (ER) stress, characterized by increased expression of caspase 2, was observed in psoriatic cells after UVB irradiation. Furthermore, decreased p-AKT expression combined with increased 15-d-PGJ2 level and p-p38 expression was observed in psoriatic keratinocytes, which may promote both apoptosis and necrosis. Application of CBD partially attenuated these effects of UVB irradiation both in healthy and psoriatic keratinocytes, reducing the levels of 15-d-PGJ2, p-p38 and caspase 8 while increasing Bcl2 expression. However, CBD increased p-AKT only in UVB-treated healthy cells. Therefore, the reduction of apoptotic signaling pathways by CBD, observed mainly in healthy keratinocytes, suggests the need for further research into the possible beneficial effects of CBD.


2021 ◽  
Vol 31 (9) ◽  
pp. 093103
Author(s):  
Zhiyong Yin ◽  
Pei-pei Zhang ◽  
Fei Xu ◽  
Zhilong Liu ◽  
Ligang Zhu ◽  
...  

2021 ◽  
Vol 62 (10) ◽  
pp. 14
Author(s):  
Heather M. Schmitt ◽  
Rachel L. Fehrman ◽  
Margaret E. Maes ◽  
Huan Yang ◽  
Lian-Wang Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document