muscle remodeling
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 59)

H-INDEX

30
(FIVE YEARS 3)

Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1965
Author(s):  
Katia Cappelli ◽  
Samanta Mecocci ◽  
Stefano Capomaccio ◽  
Francesca Beccati ◽  
Andrea Rosario Palumbo ◽  
...  

Physical exercise has been associated with the modulation of micro RNAs (miRNAs), actively released in body fluids and recognized as accurate biomarkers. The aim of this study was to measure serum miRNA profiles in 18 horses taking part in endurance competitions, which represents a good model to test metabolic responses to moderate intensity prolonged efforts. Serum levels of miRNAs of eight horses that were eliminated due to metabolic unbalance (Non Performer-NP) were compared to those of 10 horses that finished an endurance competition in excellent metabolic condition (Performer-P). Circulating miRNA (ci-miRNA) profiles in serum were analyzed through sequencing, and differential gene expression analysis was assessed comparing NP versus P groups. Target and pathway analysis revealed the up regulation of a set of miRNAs (of mir-211 mir-451, mir-106b, mir-15b, mir-101-1, mir-18a, mir-20a) involved in the modulation of myogenesis, cardiac and skeletal muscle remodeling, angiogenesis, ventricular contractility, and in the regulation of gene expression. Our preliminary data open new scenarios in the definition of metabolic adaptations to the establishment of efficient training programs and the validation of athletes’ elimination from competitions.


2021 ◽  
Vol 25 (Suppl 2) ◽  
pp. S47-54
Author(s):  
Eun-Jeong Cho ◽  
Youngju Choi ◽  
Jiyeon Kim ◽  
Jun Hyun Bae ◽  
Jinkyung Cho ◽  
...  

Purpose: The effects of aerobic exercise training on soleus muscle morphology, mitochondria-mediated apoptotic signaling, and atrophy/hypertrophy signaling in ovariectomized rat skeletal muscle were investigated.Methods: Female Sprague-Dawley rats were divided into control (CON), ovariectomy (OVX), and ovariectomy plus exercise (OVX+EX) groups. After ovarian excision, exercise training was performed using a rat treadmill at 20 m/min, 50 min/day, 5 days/week for 12 weeks. Protein levels of mitochondria-mediated apoptotic signaling and atrophy/hypertrophy signaling in the skeletal muscle (soleus) were examined through western immunoblot analysis.Results: The number of myocytes and myocyte cross-sectional area (CSA) were increased and the extramyocyte space was decreased in the OVX group compared to those in the CON group. However, aerobic exercise training significantly increased myocyte CSA and decreased extramyocyte space in the OVX+EX group compared to those in the OVX group. The protein levels of proapoptotic signaling and muscle atrophy signaling were significantly increased, whereas the protein levels of muscle hypertrophy signaling were significantly decreased in the OVX group compared to that in the CON group. Aerobic exercise training significantly decreased the protein levels of proapoptotic signaling and increased the protein level of antiapoptotic protein in the OVX+EX group compared to that in the OVX group. Aerobic exercise training significantly increased the protein levels of hypertrophy signaling and decreased protein levels of atrophy signaling in the OVX+EX group compared to those in the OVX group.Conclusions: Treadmill exercise improved estrogen deficiency-induced impairment in skeletal muscle remodeling, mitochondria-mediated apoptotic signaling, and atrophy/hypertrophy signaling in skeletal muscle.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rebecca Salomão ◽  
Ivo Vieira de Sousa Neto ◽  
Gracielle Vieira Ramos ◽  
Ramires Alsamir Tibana ◽  
João Quaglioti Durigan ◽  
...  

Although some studies have shown that a high-fat diet (HFD) adversely affects muscle extracellular matrix remodeling, the mechanisms involved in muscle trophism, inflammation, and adipogenesis have not been fully investigated. Thus, we investigated the effects of 8 weeks of paternal resistance training (RT) on gene and protein expression/activity of critical factors involved in muscle inflammation and remodeling of fathers and offspring (offspring exposed to standard chow or HFD). Animals were randomly distributed to constitute sedentary fathers (SF; n = 7; did not perform RT) or trained fathers (TF n = 7; performed RT), with offspring from mating with sedentary females. After birth, 28 male pups were divided into four groups (n = 7 per group): offspring from sedentary father submitted either to control diet (SFO-C) or high-fat diet (SFO-HF) and offspring from trained father submitted to control diet (TFO-C) or high-fat diet (TFO-HF). Our results show that an HFD downregulated collagen mRNA levels and upregulated inflammatory and atrophy pathways and adipogenic transcription factor mRNA levels in offspring gastrocnemius muscle. In contrast, paternal RT increased MMP-2 activity and decreased IL-6 levels in offspring exposed to a control diet. Paternal RT upregulated P70s6k and Ppara mRNA levels and downregulated Atrogin1 mRNA levels, while decreasing NFκ-B, IL-1β, and IL-8 protein levels in offspring exposed to an HFD. Paternal physical training influences key skeletal muscle remodeling pathways and inflammatory profiles relevant for muscle homeostasis maintenance in offspring submitted to different diets.


2021 ◽  
pp. 1-23
Author(s):  
Theret Marine ◽  
Saclier Marielle ◽  
Messina Graziella ◽  
Rossi M.V. Fabio

While skeletal muscle remodeling happens throughout life, diseases that result in its dysfunction are accountable for many deaths. Indeed, skeletal muscle is exceptionally capable to respond to stimuli modifying its homeostasis, such as in atrophy, hypertrophy, regeneration and repair. In particular conditions such as genetic diseases (muscular dystrophies), skeletal muscle’s capacity to remodel is strongly affected and undergoes continuous cycles of chronic damage. This induces scarring, fatty infiltration, as well as loss of contractibility and of the ability to generate force. In this context, inflammation, primarily mediated by macrophages, plays a central pathogenic role. Macrophages contribute as the primary regulators of inflammation during skeletal muscle regeneration, affecting tissue-resident cells such as myogenic cells and endothelial cells, but also fibro-adipogenic progenitors, which are the main source of the fibro fatty scar. During skeletal muscle regeneration their function is tightly orchestrated, while in dystrophies their fate is strongly disturbed, resulting in chronic inflammation. In this review, we will discuss the latest findings on the role of macrophages in skeletal muscle diseases, and how they are regulated.


Author(s):  
Fabien Beaufils ◽  
Pauline Esteves ◽  
Raphaël Enaud ◽  
Ophélie Germande ◽  
Alexis Celle ◽  
...  

Author(s):  
Pauline Esteves ◽  
Landry Blanc ◽  
Alexis Celle ◽  
Isabelle Dupin ◽  
Elise Maurat ◽  
...  

2021 ◽  
Vol 22 (15) ◽  
pp. 8310
Author(s):  
Tomohiko Shirakawa ◽  
Aki Miyawaki ◽  
Tatsuo Kawamoto ◽  
Shoichiro Kokabu

The weight of skeletal muscle accounts for approximately 40% of the whole weight in a healthy individual, and the normal metabolism and motor function of the muscle are indispensable for healthy life. In addition, the skeletal muscle of the maxillofacial region plays an important role not only in eating and swallowing, but also in communication, such as facial expressions and conversations. In recent years, skeletal muscle atrophy has received worldwide attention as a serious health problem. However, the mechanism of skeletal muscle atrophy that has been clarified at present is insufficient, and a therapeutic method against skeletal muscle atrophy has not been established. This review provides views on the importance of skeletal muscle in the maxillofacial region and explains the differences between skeletal muscles in the maxillofacial region and other regions. We summarize the findings to change in gene expression in muscle remodeling and emphasize the advantages and disadvantages of denervation-induced skeletal muscle atrophy model. Finally, we discuss the newly discovered beneficial effects of natural compounds on skeletal muscle atrophy.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Julia Maria Torres Velarde ◽  
Rohit Kolora ◽  
Jane Khudyakov ◽  
Daniel Crocker ◽  
Peter Sudmant ◽  
...  

Author(s):  
Fabien Beaufils ◽  
Pauline Esteves ◽  
Raphael Enaud ◽  
Ophélie Germande ◽  
Alexis Celle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document