catalyst poisoning
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 24)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Israel Cano ◽  
Andreas Weilhard ◽  
Carmen Martin ◽  
Jose Pinto ◽  
Rhys W. Lodge ◽  
...  

AbstractUsing a magnetron sputtering approach that allows size-controlled formation of nanoclusters, we have created palladium nanoclusters that combine the features of both heterogeneous and homogeneous catalysts. Here we report the atomic structures and electronic environments of a series of metal nanoclusters in ionic liquids at different stages of formation, leading to the discovery of Pd nanoclusters with a core of ca. 2 nm surrounded by a diffuse dynamic shell of atoms in [C4C1Im][NTf2]. Comparison of the catalytic activity of Pd nanoclusters in alkene cyclopropanation reveals that the atomically dynamic surface is critically important, increasing the activity by a factor of ca. 2 when compared to compact nanoclusters of similar size. Catalyst poisoning tests using mercury and dibenzo[a,e]cyclooctene show that dynamic Pd nanoclusters maintain their catalytic activity, which demonstrate their combined features of homogeneous and heterogeneous catalysts within the same material. Additionally, kinetic studies of cyclopropanation of alkenes mediated by the dynamic Pd nanoclusters reveal an observed catalyst order of 1, underpinning the pseudo-homogeneous character of the dynamic Pd nanoclusters.


Author(s):  
Qianming Man ◽  
Pijun Gong ◽  
Yifei Jiang ◽  
Yulu Zhang ◽  
Ziqiang Chen ◽  
...  

The poisoning effect of KNO3, NaNO3, and Ca(NO3)2 on CeZrTiAl catalyst for selective catalytic reduction of NO with NH3 was investigated. It was found that the activity deactivation rate follows K> Na > Ca. SEM and BET showed that the accumulation of catalysts was severe after poisoning, and the nanosheet γ-Al2O3 skeleton structure disappeared due to alkali coating. The decrease of the specific surface area is accompanied by pore blockage, making the catalyst unable to expose rich reaction sites. In addition, the fewer surface Ce3+ and chemisorbed oxygen on the surface of the poisoned catalyst weaken the cycle between Ce3+ and Ce4+, resulting in bad redox performance. Thus, the failure to realize the efficient oxidation of NO to NO2. Another critical reason for catalyst poisoning failure is that the decrease of surface acid sites seriously affects the adsorption and activation of NH3 and NOx on the catalyst surface.


2021 ◽  
Vol 21 (7) ◽  
pp. 3971-3974
Author(s):  
Young-Kwon Park ◽  
Muhammad Zain Siddiqui ◽  
Sangjae Jeong ◽  
Eun-Suk Jang ◽  
Young-Min Kim

The effect of seawater aging on the thermal and catalytic pyrolysis of polypropylene (PP) was investigated using a thermogravimetric analyzer and pyrolyzer-gas chromatography/mass spectrometry. Although the surface properties of PP were of the oxidized form by seawater aging, the decomposition temperature and non-catalytic pyrolysis products of PP were relatively unchanged largely due to seawater aging. The catalytic pyrolysis of seawater-aged PP over all the catalysts produced smaller amounts of aromatic hydrocarbons than that of fresh PP due to catalyst poisoning caused by the residual inorganics. Among the catalysts, microporous HZSM-5 (SiO2/Al2O3:23) produced the largest amount of aromatic hydrocarbons followed in order by microporous HY(30) and nanoporous Al-MCM-41(20) from seawater-aged PP due to the high acidity and appropriate pore size for the generation of aromatic hydrocarbons.


ACS Catalysis ◽  
2021 ◽  
pp. 8417-8430
Author(s):  
Sulay Saha ◽  
Pralay Gayen ◽  
Zhongyang Wang ◽  
Ram Ji Dixit ◽  
Kritika Sharma ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Miao Guo ◽  
Xiangtao Kong ◽  
Chunzhi Li ◽  
Qihua Yang

AbstractHydrogenation of benzoic acid (BA) to cyclohexanecarboxylic acid (CCA) has important industrial and academic significance, however, the electron deficient aromatic ring and catalyst poisoning by carboxyl groups make BA hydrogenation a challenging transformation. Herein, we report that Pt/TiO2 is very effective for BA hydrogenation with, to our knowledge, a record TOF of 4490 h−1 at 80 °C and 50 bar H2, one order higher than previously reported results. Pt/TiO2 catalysts with electron-deficient and electron-enriched Pt sites are obtained by modifying the electron transfer direction between Pt and TiO2. Electron-deficient Pt sites interact with BA more strongly than electron-rich Pt sites, helping the dissociated H of the carboxyl group to participate in BA hydrogenation, thus enhancing its activity. The wide substrate scope, including bi- and tri-benzoic acids, further demonstrates the high efficiency of Pt/TiO2 for hydrogenation of BA derivatives.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 394
Author(s):  
Baohe Wang ◽  
Honggang Dong ◽  
Liang Lu ◽  
Hongxia Liu ◽  
Zhaobang Zhang ◽  
...  

A series of KxH1.1-xCu0.2Cs1(NH4)1.5PVMo11O40 (KxCuCsNH4PVA) catalysts with different x values were synthesized to catalyze the selective oxidation of methacrolein (MAL) to methacrylic acid (MAA). The effects of potassium (K) ions on both the structure and catalytic activity were studied in detail. The optimum K0.6CuCsNH4PVA exhibited a large surface area, more acid sites, and abundant active species (V4+/VO2+) in the secondary structure of the Keggin structure, consequently offering good catalytic performance. Furthermore, K ions increased the MAA selectivity at the expense of carbon monoxide and carbon dioxide (together defined as COX). Additionally, several process parameters for MAL oxidation were evaluated in the processing experiments. The effects of aldehyde impurities (formaldehyde and propanal) on the catalytic performance were investigated. Possible detrimental effects (catalyst poisoning and structural damage) of aldehyde impurities were excluded. A light decrease in MAL conversion could be attributed to the competitive adsorption of aldehyde impurities and MAL on the catalyst. Hopefully, this work contributes to the design of stable and feasible catalysts for the industrial production of MAA.


Author(s):  
Maximilian Wagner ◽  
Oliver Lorenz ◽  
Felix Paul Lohmann-Richters ◽  
Áron Varga ◽  
Bernd Abel

Solid acid fuel cells operate at intermediate temperatures utilizing a solid electrolyte (CsH2PO4, CDP). However, relatively little is known about the degradation mechanism and the topic is rarely addressed. Phosphate...


Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1225
Author(s):  
Alireza Attari Moghaddam ◽  
Ulrike Krewer

Activity of ammonia synthesis catalyst in the Haber-Bosch process is studied for the case of feeding the process with intermittent and impurity containing hydrogen stream from water electrolysis. Hydrogen deficiency due to low availability of renewable energy is offset by increased flow rate of nitrogen, argon, or ammonia, leading to off-design operation of the Haber-Bosch process. Catalyst poisoning by ppm levels of water and oxygen is considered as the main deactivation mechanism and is evaluated with a microkinetic model. Simulation results show that catalyst activity changes considerably with feed gas composition, even at exceptionally low water contents below 10ppm. A decreased hydrogen content always leads to lower poisoning of the catalyst. It is shown that ammonia offers less flexibility to the operation of Haber-Bosch process under fluctuating hydrogen production compared to nitrogen and argon. Transient and significant changes of catalyst activity are expected in electrolysis coupled Haber-Bosch process.


Sign in / Sign up

Export Citation Format

Share Document