infinitesimal perturbation analysis
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 2)

H-INDEX

16
(FIVE YEARS 0)

Author(s):  
Yue Liu ◽  
Zhiyan Shi ◽  
Ying Tang ◽  
Jingjing Yao ◽  
Xincheng Zhu

This paper establishes a new version of integration by parts formula of Markov chains for sensitivity computation, under much lower restrictions than the existing researches. Our approach is more fundamental and applicable without using Girsanov theorem or Malliavin calculus as did by past papers. Numerically, we apply this formula to compute sensitivity regarding the transition rate matrix and compare with a recent research by an IPA (infinitesimal perturbation analysis) method and other approaches.


2016 ◽  
Vol 53 (3) ◽  
pp. 715-732
Author(s):  
Guangxin Jiang ◽  
Michael C. Fu

AbstractIn this paper we estimate quantile sensitivities for dependent sequences via infinitesimal perturbation analysis, and prove asymptotic unbiasedness, weak consistency, and a central limit theorem for the estimators under some mild conditions. Two common cases, the regenerative setting and ϕ-mixing, are analyzed further, and a new batched estimator is constructed based on regenerative cycles for regenerative processes. Two numerical examples, the G/G/1 queue and the Ornstein–Uhlenbeck process, are given to show the effectiveness of the estimator.


Sign in / Sign up

Export Citation Format

Share Document