theoretic property
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 3)

H-INDEX

8
(FIVE YEARS 1)

2022 ◽  
Vol 7 (4) ◽  
pp. 5480-5498
Author(s):  
Piyapat Dangpat ◽  
◽  
Teerapong Suksumran ◽  

<abstract><p>The extended conjugate graph associated to a finite group $ G $ is defined as an undirected graph with vertex set $ G $ such that two distinct vertices joined by an edge if they are conjugate. In this article, we show that several properties of finite groups can be expressed in terms of properties of their extended conjugate graphs. In particular, we show that there is a strong connection between a graph-theoretic property, namely regularity, and an algebraic property, namely nilpotency. We then give some sufficient conditions and necessary conditions for the non-central part of an extended conjugate graph to be regular. Finally, we study extended conjugate graphs associated to groups of order $ pq $, $ p^3 $, and $ p^4 $, where $ p $ and $ q $ are distinct primes.</p></abstract>


Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 279 ◽  
Author(s):  
Ross Duncan ◽  
Aleks Kissinger ◽  
Simon Perdrix ◽  
John van de Wetering

We present a completely new approach to quantum circuit optimisation, based on the ZX-calculus. We first interpret quantum circuits as ZX-diagrams, which provide a flexible, lower-level language for describing quantum computations graphically. Then, using the rules of the ZX-calculus, we give a simplification strategy for ZX-diagrams based on the two graph transformations of local complementation and pivoting and show that the resulting reduced diagram can be transformed back into a quantum circuit. While little is known about extracting circuits from arbitrary ZX-diagrams, we show that the underlying graph of our simplified ZX-diagram always has a graph-theoretic property called generalised flow, which in turn yields a deterministic circuit extraction procedure. For Clifford circuits, this extraction procedure yields a new normal form that is both asymptotically optimal in size and gives a new, smaller upper bound on gate depth for nearest-neighbour architectures. For Clifford+T and more general circuits, our technique enables us to to `see around' gates that obstruct the Clifford structure and produce smaller circuits than naïve `cut-and-resynthesise' methods.


2018 ◽  
Vol 25 (03) ◽  
pp. 459-474
Author(s):  
Jeoung Soo Cheon ◽  
Tai Keun Kwak ◽  
Yang Lee

The concept of reflexive property is introduced by Mason. This note concerns a ring-theoretic property of matrix rings over reflexive rings. We introduce the concept of weakly reflexive rings as a generalization of reflexive rings. From any ring, we can construct weakly reflexive rings but not reflexive, using its lower nilradical. We study various useful properties of such rings in relation with ideals in matrix rings, showing that this new property is Morita invariant. We also investigate the weakly reflexive property of several sorts of ring extensions which have roles in ring theory.


Author(s):  
Kurt Sylvan ◽  
Ernest Sosa

This chapter defends a middle ground between two extremes in the literature on the place of reasons in epistemology. Against members of the “reasons first” movement, we argue that reasons are not the sole grounds of epistemic normativity. We suggest that the virtue-theoretic property of competence is rather the key building block. To support this approach, we note that reasons must be possessed to ground central epistemic properties, and argue that possession is grounded in competence. But while we here diverge with reasons-firsters, we also distance ourselves from those who deem reasons unimportant. Indeed, we hold that having sufficient epistemic reasons is necessary and sufficient for propositional justification, and that proper basing on them yields doxastic justification. But since possession and proper basing are grounded in competence, reasons are not the end of the road: competence enables them to do their work, putting them—and us—in the middle.


2018 ◽  
Vol 11 (4) ◽  
pp. 780-804 ◽  
Author(s):  
TOMMASO MORASCHINI

AbstractAbstract algebraic logic is a theory that provides general tools for the algebraic study of arbitrary propositional logics. According to this theory, every logic ${\cal L}$ is associated with a matrix semantics $Mo{d^{\rm{*}}}{\cal L}$. This article is a contribution to the systematic study of the so-called truth sets of the matrices in $Mo{d^{\rm{*}}}{\cal L}$. In particular, we show that the fact that the truth sets of $Mo{d^{\rm{*}}}{\cal L}$ can be defined by means of equations with universally quantified parameters is captured by an order-theoretic property of the Leibniz operator restricted to deductive filters of ${\cal L}$. This result was previously known for equational definability without parameters. Similarly, it was known that the truth sets of $Mo{d^{\rm{*}}}{\cal L}$ are implicitly definable if and only if the Leibniz operator is injective on deductive filters of ${\cal L}$ over every algebra. However, it was an open problem whether the injectivity of the Leibniz operator transfers from the theories of ${\cal L}$ to its deductive filters over arbitrary algebras. We show that this is the case for logics expressed in a countable language, and that it need not be true in general. Finally we consider an intermediate condition on the truth sets in $Mo{d^{\rm{*}}}{\cal L}$ that corresponds to the order-reflection of the Leibniz operator.


2016 ◽  
Vol 81 (4) ◽  
pp. 1481-1499 ◽  
Author(s):  
LUDOVIC PATEY

AbstractNo natural principle is currently known to be strictly between the arithmetic comprehension axiom (ACA0) and Ramsey’s theorem for pairs ($RT_2^2$) in reverse mathematics. The tree theorem for pairs ($TT_2^2$) is however a good candidate. The tree theorem states that for every finite coloring over tuples of comparable nodes in the full binary tree, there is a monochromatic subtree isomorphic to the full tree. The principle $TT_2^2$ is known to lie between ACA0 and $RT_2^2$ over RCA0, but its exact strength remains open. In this paper, we prove that $RT_2^2$ together with weak König’s lemma (WKL0) does not imply $TT_2^2$, thereby answering a question of Montálban. This separation is a case in point of the method of Lerman, Solomon and Towsner for designing a computability-theoretic property which discriminates between two statements in reverse mathematics. We therefore put the emphasis on the different steps leading to this separation in order to serve as a tutorial for separating principles in reverse mathematics.


Author(s):  
David Deutsch ◽  
Chiara Marletto

We propose a theory of information expressed solely in terms of which transformations of physical systems are possible and which are impossible—i.e. in constructor-theoretic terms. It includes conjectured, exact laws of physics expressing the regularities that allow information to be physically instantiated. Although these laws are directly about information, independently of the details of particular physical instantiations, information is not regarded as an a priori mathematical or logical concept, but as something whose nature and properties are determined by the laws of physics alone. This theory solves a problem at the foundations of existing information theory, namely that information and distinguishability are each defined in terms of the other. It also explains the relationship between classical and quantum information, and reveals the single, constructor-theoretic property underlying the most distinctive phenomena associated with the latter, including the lack of in-principle distinguishability of some states, the impossibility of cloning, the existence of pairs of variables that cannot simultaneously have sharp values, the fact that measurement processes can be both deterministic and unpredictable, the irreducible perturbation caused by measurement, and locally inaccessible information (as in entangled systems).


Sign in / Sign up

Export Citation Format

Share Document