ball end mill
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 31)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
M.A. Hanafiah ◽  
A.A. Aziz ◽  
A.R. Yusoff

Surface quality is among the predominant criterion in measuring machining process performance, including milling. It is extremely dependent on the process variable, such as cutting parameters and cutting tool conditions. The main intention of this research work is to study the effect of the milling machining parameters, including depth of cut, spindle speed, feed rate as well as machining pattern to the final surface area roughness of the fabricated dimple structure. The concave profile of the dimple is machined at the right angle to a flat Al6061 specimen using a ball end mill attached to a 3-axis CNC milling machine, and the surface area of the concave profile is measured using 3D measuring laser microscope. It is observed that surface area roughness reacts with the spindle speed and feed rate with different tool sizes. Based on the result gained, the work has successfully characterised the influence of studied milling parameters on the dimple surface area roughness, where within the range of the studied parameter, the surface area roughness varies only less than 2.2 μm. The research work will be continued further on the incline milling technique and micro size ball end mill.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1360
Author(s):  
Florin Popișter ◽  
Daniela Popescu ◽  
Ancuţa Păcurar ◽  
Răzvan Păcurar

This paper represents the focus on developing efficient algorithms that reduce the operations required to be employed in order to obtain complex surfaces milling finishing toolpaths for the three axis NC (Numerical Control) machine within the reverse engineering chain of processes. Direct machining is the process of generating efficient toolpaths directly from the digitized data, meaning the point cloud. The entire research is focused on determining the mathematical calculus able to interpret the data collected through the contact/noncontact 3D scanning process. In this direction, two algorithms were developed to generate ball-end mill finishing toolpaths for freeform surfaces using ordered/unordered point clouds. Practical work that validates author’s employed algorithms of obtaining finishing milling toolpaths uses the point cloud stored from the 3D scanning process in matrix found in ASCII files, which makes data interpreting easy.


2021 ◽  
Vol 143 (9) ◽  
Author(s):  
Minglong Guo ◽  
Zhaocheng Wei ◽  
Minjie Wang ◽  
Jia Wang ◽  
Shengxian Liu

Abstract The core parts with the characteristic of freeform surface are widely used in the major equipment of various fields. Cutting force is the most important physical quantity in the five-axis CNC machining process of core parts. Not only in micro-milling, but also in macro-milling, there is also an obvious size effect, especially in medium- and high-speed milling, which is frequently ignored. In this paper, the milling force prediction model for five-axis machining of a freeform surface with a ball-end mill considering the mesoscopic size effect is established. Based on the characteristics of cutting thickness in macro-milling, a new dislocation density correction form is proposed, and a new experiment is designed to identify the dislocation density correction coefficient. Therefore, the shear stress calculated in this paper not only reflects the cutting dynamic mechanical characteristics but also considers the mesoscopic size effect. A linear function is proposed to describe the relationship between friction coefficient and cutting speed, cutter rake angle, and cutting thickness. Considering cutter run-out, the micro-element cutting force in the shear zone and plough zone are analyzed. The cutting geometry contact between the freeform surface and the ball-end mill is analyzed analytically by the space limitation method. Finally, the total milling force is obtained by summing all the force vectors of cutting edge micro-elements within the in-cut cutting edge. In the five-axis machining experiment of freeform surface, the theoretically predicted results of milling forces are in good agreement with the measured results in trend and amplitude.


Author(s):  
Arivazhagan Anbalagan ◽  
Eakambaram Arumugam ◽  
Anthony Xavior Michael

Author(s):  
Tomonobu Suzuki ◽  
Koichi Morishige

Abstract This study aimed to improve the efficiency of free-form surface machining by using a five-axis controlled machine tool and a barrel tool. The barrel tool has cutting edges, with curvature smaller than the radius, increasing the pick feed width compared with a conventional ball end mill of the same tool radius. As a result, the machining efficiency can be improved; however, the cost of the barrel tool is high and difficult to reground. In this study, a method to obtain the cutting points that make the cusp height below the target value is proposed. Moreover, a method to improve the tool life by continuously and uniformly changing the contact point on the cutting edge is proposed. The usefulness of the developed method is confirmed through machining simulations.


2020 ◽  
Vol 40 (9) ◽  
pp. 775-777
Author(s):  
E. A. Ryabov ◽  
S. Yu. Yurasov ◽  
O. I. Yurasova ◽  
V. A. Kuznetsov ◽  
V. B. Romanov
Keyword(s):  
End Mill ◽  

2020 ◽  
Vol 40 (9) ◽  
pp. 772-774
Author(s):  
E. A. Ryabov ◽  
S. Yu. Yurasov ◽  
O. I. Yurasova ◽  
Yu. E. Petukhov ◽  
P. M. Pivkin ◽  
...  
Keyword(s):  
End Mill ◽  

Sign in / Sign up

Export Citation Format

Share Document