maxillofacial surgery
Recently Published Documents


TOTAL DOCUMENTS

4528
(FIVE YEARS 1461)

H-INDEX

54
(FIVE YEARS 11)

2022 ◽  
Vol 3 (1) ◽  
pp. 46-54
Author(s):  
Paweł Turek ◽  

Designing an anatomical structure for a surgical procedure is not a simple task. It is especially true of the craniofacial area, which consists of bone tissues with very complex geometry. CAD modelers need appropriate knowledge and skills in medicine and technical sciences to fully use the currently available tools in related processes with the reconstruction of the craniofacial areas. The presented preliminary studies are based on four patients treated at the Department of Maxillofacial Surgery. The segmentation process of the mandible model was performed in the ITK SNAP software. The process of generating surface body models was performed in the Auto Surfacing module in Geomagic software using two different methods: organic and mechanical. Then compare both methods for the accuracy of generating a CAD model of the mandible based on a triangle mesh structure in the Focus Inspection and the GOM Inspect software.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Shintaro Sukegawa ◽  
Tamamo Matsuyama ◽  
Futa Tanaka ◽  
Takeshi Hara ◽  
Kazumasa Yoshii ◽  
...  

AbstractPell and Gregory, and Winter’s classifications are frequently implemented to classify the mandibular third molars and are crucial for safe tooth extraction. This study aimed to evaluate the classification accuracy of convolutional neural network (CNN) deep learning models using cropped panoramic radiographs based on these classifications. We compared the diagnostic accuracy of single-task and multi-task learning after labeling 1330 images of mandibular third molars from digital radiographs taken at the Department of Oral and Maxillofacial Surgery at a general hospital (2014–2021). The mandibular third molar classifications were analyzed using a VGG 16 model of a CNN. We statistically evaluated performance metrics [accuracy, precision, recall, F1 score, and area under the curve (AUC)] for each prediction. We found that single-task learning was superior to multi-task learning (all p < 0.05) for all metrics, with large effect sizes and low p-values. Recall and F1 scores for position classification showed medium effect sizes in single and multi-task learning. To our knowledge, this is the first deep learning study to examine single-task and multi-task learning for the classification of mandibular third molars. Our results demonstrated the efficacy of implementing Pell and Gregory, and Winter’s classifications for specific respective tasks.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Yoshiko Ike ◽  
Takahiro Shimizu ◽  
Masaru Ogawa ◽  
Takahiro Yamaguchi ◽  
Keisuke Suzuki ◽  
...  

Abstract Background Fibrous sclerosing tumours and hypertrophic lesions in IgG4-related disease (IgG4-RD) are formed in various organs throughout the body, but disease in the oral region is not included among individual organ manifestations. We report a case of ossifying fibrous epulis that developed from the gingiva, as an instance of IgG4-RD. Case presentation A 60-year-old Japanese man visited the Department of Oral and Maxillofacial Surgery, Gunma University Hospital, with a chief complaint of swelling of the left mandibular gingiva. A 65 mm × 45 mm pedunculated tumour was observed. The bilateral submandibular lymph nodes were enlarged. The intraoperative pathological diagnosis of the enlarged cervical lymph nodes was inflammation. Based on this diagnosis, surgical excision was limited to the intraoral tumour, which was subsequently pathologically diagnosed as ossifying fibrous epulis. Histopathologically, the ossifying fibrous epulis exhibited increased levels of fibroblasts and collagen fibres, as well as infiltration by numerous plasma cells. The IgG4/IgG cell ratio was > 40%. Serologic analysis revealed hyper-IgG4-emia (> 135 mg/dL). The patient met the comprehensive clinical diagnosis criteria and the American College of Rheumatology and European League Against Rheumatism classification criteria for IgG4-RD. Based on these criteria, we diagnosed the ossifying fibrous epulis in our patient as an IgG4-related disease. A pathological diagnosis of IgG4-related lymphadenopathy was established for the cervical lymph nodes. Concomitant clinical findings were consistent with type II IgG4-related lymphadenopathy. Conclusions A routine serological test may be needed in cases with marked fibrous changes (such as epulis) in the oral cavity and plasma cells, accompanied by tumour formation, to determine the possibility of individual-organ manifestations of IgG4-related disease.


Athenea ◽  
2022 ◽  
Vol 2 (6) ◽  
Author(s):  
Francisco Hauser

A document is presented with the results of various investigations related to data patterns, more specifically those that have been designed with intelligent computational tools. The use of data patterns in medicine is something that has emerged in recent decades and that increasingly presents development alternatives for engineering projects. Various scientific publications are evaluated in this document to relate engineering applications in medicine, and contrast the possible technological impact offered by computational sciences. Keywords: Engineering in medicine, pattern recognition, computer science. References [1]R. Pallás-Areny, «LA INGENIERÍA ELECTRÓNICA Y LA MEDICINA,» [En línea]. Available: https://www.researchgate.net/profile/Ramon-Pallas-Areny/publication/239813249_La_Ingenieria_electronica_y_la_medicina/links/0deec539fea82baf03000000/La-Ingenieria-electronica-y-la-medicina.pdf. [Último acceso: 27 diciembre 2021].[2]H. Medellín, G. González, R. Espinosa, E. Govea y T. Lim, «Desarrollo de Aplicaciones de Realidad Virtual y Sistemas Hápticos en Ingeniería, medicina y arte,» de Ciencias de la Ingeniería y Tecnología, San Luis Potosí-Mexico, Universidad Autónoma de San Luis Potosí, 2014, pp. 77-93. [3]S. Chris, E. Ray, J. Andrew y L. Jason, «Designing cranial implants in a haptic augmented reality environment,» Communications of the ACM, vol. 47, nº 8, pp. 33-38, 2004. [4]G. Sabine, K. Erwin y G. Bernd, «Advances in interactive craniofacial surgery planning by 3D simulation and visualization.,» Oral and Maxillofacial Surgery, vol. 24, pp. 120-125, 1995. [5]P. Philipp, G. B. Alexander, P. Andreas, V. S. Norman, P. Bernhard, P. Andreas, H. Karl-Heinz, T. Ulf, S. Ingo y H. Max, «Virtual Dental Surgery as a New Educational Tool in Dental School,» Journal of Cranio- Maxillo-Facial Surgery, vol. 38, pp. 560-564, 2010. [6]C. Castañeda y F. Vázquez, «Realidad Virtual, un apoyo en la Terapia de Acrofobia, Claustrofobia y Agorafobia, » de Memorias del VIII Congreso Internacional sobre Innovación y Desarrollo Tecnológico (CIINDET 2011), Cuernavaca Morelos, México., 2011. [7]F. Suárez, O. Flor y L. Rosales, «Sistema de interpretación de conductas para identificación de situaciones de riesgo,» Revista Ibérica de Sistemas e Tecnologias de Informação, vol. E31, pp. 309-317, 2020.


Athenea ◽  
2022 ◽  
Vol 2 (6) ◽  
pp. 5-10
Author(s):  
Edison Wernher Ceballos Bejarano ◽  
Huaita Bedregal Asencio Alejandro

Education has undergone evolutionary changes necessary to be able to generate the necessary contributions for each era, thus creating spaces for discussion that produce new methodologies and new paradigms for teaching. The case of engineering is very particular in these times, and university education should make its best efforts to offer future engineers the necessary skills to face the challenges of modern industry. In this work a literature review is made to analyze the new educational proposals that will be necessary for the training of the engineer in times of industrial digitization. The results show that an adaptation to the teaching processes is necessary, such that an appropriate engineering training is feasible, which assists and meets the requirements of the industry of the future. Keywords: Educational methodologies, modern industry, teaching processes. References [1]La importancia de las letras, «La historia de la educación,» 2010. [Online]. Available: http://historiageneraldelaeducacion.blogspot.com/2010/03/historia-de-la-educacion-conclusion.html. [Last access: 27 11 2021]. [2]V. Guichot, «HISTORIA DE LA EDUCACIÓN: REFLEXIONES SOBRE SU OBJETO, UBICACIÓN EPISTEMOLÓGICA, DEVENIR HISTÓRICO Y TENDENCIAS ACTUALES,» Revista Latinoamericana de Estudios Educativos, vol. 2, nº 1, pp. 11-51, 2006. [3]K. Zambrano, «Línea de tiempo de la historia de la educación,» 13 septiembre 2018. [Online]. Available: https://prezi.com/p/oashlaqm_uxn/linea-del-tiempo-historia-de-la-educacion/. [Last access: 24 11 2021]. [4]M. Begoña Tellería, «Educación y nuevas tecnologías. Educación a Distancia y Educación Virtual,» Revista de Teoría y Didáctica de las Ciencias, nº 9, pp. 209-222, 2004. [5]R. Nieto, «EDUCACIÓN VIRTUAL O VIRTUALIDAD DE LA EDUCACIÓN,» Rev.hist.educ.latinoam, vol.14, nº 19, 2012. [6]R. Pallás-Areny, «LA INGENIERÍA ELECTRÓNICA Y LA MEDICINA,» [Online]. Available: https://www.researchgate.net/profile/Ramon-Pallas-Areny/publication/239813249_La_Ingenieria_electronica_y_la_medicina/links/0deec539fea82baf03000000/La-Ingenieria-electronica-y-la-medicina.pdf. [Last access: 27 12 2021]. [7]H. Medellín, G. González, R. Espinosa, E. Govea and T. Lim, «Desarrollo de Aplicaciones de Realidad Virtual y Sistemas Hápticos en Ingeniería, medicina y arte,» de Ciencias de la Ingeniería y Tecnología, San Luis Potosí- Mexico, Universidad Autónoma de San Luis Potosí, 2014, pp. 77-93. [8]S. Chris, E. Ray, J. Andrew and L. Jason, «Designing cranial implants in a haptic augmented reality environment,»Communications of the ACM, vol. 47, nº 8, pp. 33-38, 2004. [9]G. Sabine, K. Erwin and G. Bernd, «Advances in interactive craniofacial surgery planning by 3D simulation and visualization.,» Oral and Maxillofacial Surgery, vol. 24, pp. 120-125, 1995. [10]P. Philipp, G. B. Alexander, P. Andreas, V. S. Norman, P. Bernhard, P. Andreas, H. Karl-Heinz, T. Ulf, S. Ingo y H. Max, «Virtual Dental Surgery as a New Educational Tool in Dental School,» Journal of Cranio- Maxillo-Facial Surgery, vol. 38, pp. 560-564, 2010. [11]C. Castañeda and F. Vázquez, «Realidad Virtual, un apoyo en la Terapia de Acrofobia, Claustrofobia y Agorafobia, » de Memorias del VIII Congreso Internacional sobre Innovación y Desarrollo Tecnológico (CIINDET 2011), Cuernavaca Morelos, México., 2011. [12]F. Suárez, O. Flor and L. Rosales, «Sistema de interpretación de conductas para identificación de situaciones de riesgo,» Revista Ibérica de Sistemas e Tecnologias de Informação, vol. E31, pp. 309-317, 2020.


Athenea ◽  
2022 ◽  
Vol 2 (5) ◽  
pp. 55-60
Author(s):  
Edison Wernher Ceballos Bejarano ◽  
Asencio Alejandro Huaita Bedregal

Engineering is part of one of the most forward-thinking careers in industries. In this work, the elementary principles of engineering projects in university education are evaluated and the minimum criteria that an engineering project should have are established so that the future professional develops the necessary skills for their performance as an engineer. A bibliographic review of engineering education is then carried out and the formulation of projects that make the development of practical skills possible. Keywords: Engineering practices, academic projects, industry 4.0. References [1]A. Olaya, Bioinformática como recurso educativo: Proyecto de ingeniería, Córdoba: Universidad de Córdoba, 2018. [2]L. Antoni, La Industria 4.0 en la sociedad digital, Barcelona: Marge Books, 2019. [3]d. V. José, «Industria 4.0: la transformación digital de la industria,» Universidad de Deusto, Deusto. [4]G. Mendizábal and A. Escalante, «El reto de la educación 4.0: competencias laborales para el trabajo emergentepor la covid-19,» RICSH, vol. 10, nº 19, pp. 261 - 283., 2021. [5]R. Ramirez-Mendoza, R. Morales-Menendez, H. Iqbal and R. Parra-Saldivar, «Educación en Ingeniería 4.0: - propuesta para un nuevo currículo,» de EDUCON, Conferencia Global de Educación en Ingeniería de la IEEE 2018, 2018. [6]T. P. Ngoc and N. M. Tri, «Desarrollar la educación superior en el contexto de la revolución industrial 4.0,» Multicultural Education, vol. 7, nº 6, pp. 208-217, 2021. [7]A. Benešová and J. Tupa, «Requisitos para la educación y calificación de las personas en la industria 4.0,» Procedia Manufacturing, vol. 11, pp. 2195-2202, 2017. [8]C. Huerta and M. Velázquez, «Educación 4.0 como respuesta a la Industria 4.0: un estudio analítico-descriptivo,» Ciencia Latina, vol. 5, nº 1, 2021. [9]R. L. Katz, «Capital humano para la transformación digital en América Latina,» CEPAL, 2018. [10]R. Pallás-Areny, «LA INGENIERÍA ELECTRÓNICA Y LA MEDICINA,» [Online]. Available: https://www.researchgate.net/profile/Ramon-Pallas-Areny/publication/239813249_La_Ingenieria_electronica_y_la_medicina/links/0deec539fea82baf03000000/La-Ingenieria-electronica-y-la-medicina.pdf. [Last access: 27 12 2021]. [11]H. Medellín, G. González, R. Espinosa, E. Govea and T. Lim, «Desarrollo de Aplicaciones de Realidad Virtual y Sistemas Hápticos en Ingeniería, medicina y arte,» de Ciencias de la Ingeniería y Tecnología, San Luis Potosí-Mexico, Universidad Autónoma de San Luis Potosí, 2014, pp. 77-93. [12]S. Chris, E. Ray, J. Andrew and L. Jason, «Designing cranial implants in a haptic augmented reality environment,» Communications of the ACM, vol. 47, nº 8, pp. 33-38, 2004. [13]G. Sabine, K. Erwin and G. Bernd, «Advances in interactive craniofacial surgery planning by 3D simulation and visualization.,» Oral and Maxillofacial Surgery, vol. 24, pp. 120-125, 1995. [14]P. Philipp, G. B. Alexander, P. Andreas, V. S. Norman, P. Bernhard, P. Andreas, H. Karl-Heinz, T. Ulf, S. Ingo and H. Max, «Virtual Dental Surgery as a New Educational Tool in Dental School,» Journal of Cranio- Maxillo-Facial Surgery, vol. 38, pp. 560-564, 2010. [15]C. Castañeda and F. Vázquez, «Realidad Virtual, un apoyo en la Terapia de Acrofobia, Claustrofobia y Agorafobia, » de Memorias del VIII Congreso Internacional sobre Innovación y Desarrollo Tecnológico (CIINDET 2011), Cuernavaca Morelos, México., 2011. [16]F. Suárez, O. Flor and L. Rosales, «Sistema de interpretación de conductas para identificación de situaciones de riesgo,» Revista Ibérica de Sistemas e Tecnologias de Informação, vol. E31, pp. 309-317, 2020. [17]La importancia de las letras, «La historia de la educación,» 2010. [Online]. Available: http://historiageneraldelaeducacion.blogspot.com/2010/03/historia-de-la-educacion-conclusion.html. [Last access: 27 11 2021]. [18]V. Guichot, «HISTORIA DE LA EDUCACIÓN: REFLEXIONES SOBRE SU OBJETO, UBICACIÓN EPISTEMOLÓGICA, DEVENIR HISTÓRICO Y TENDENCIAS ACTUALES,» Revista Latinoamericana de Estudios Educativos, vol. 2, nº 1, pp. 11-51, 2006. [19]K. Zambrano, «Línea de tiempo de la historia de la educación,» 13 septiembre 2018. [Online]. Available: https://prezi.com/p/oashlaqm_uxn/linea-del-tiempo-historia-de-la-educacion/. [Last access: 24 11 2021]. [20]M. Begoña Tellería, «Educación y nuevas tecnologías. Educación a Distancia y Educación Virtual,» Revista de Teoría y Didáctica de las Ciencias, nº 9, pp. 209-222, 2004. [21]R. Nieto, «EDUCACIÓN VIRTUAL O VIRTUALIDAD DE LA EDUCACIÓN,» Rev.hist.educ.latinoam, vol. 14, nº 19, 2012. [22]S. Levy, D. Romero and R. Pasini, «Implementacón práctica del agilismo en proyecto de Ingeniería de Software, » de XLV Jornadas Argentinas de Informática e Investigación Operativa, Argentina, 2016.


2022 ◽  
Vol 12 (1) ◽  
pp. 60
Author(s):  
Zhouxiao Li ◽  
Yimin Liang ◽  
Thilo Ludwig Schenck ◽  
Konstantin Frank ◽  
Riccardo Enzo Giunta ◽  
...  

Three-dimensional surface imaging systems (3DSI) provide an effective and applicable approach for the quantification of facial morphology. Several researchers have implemented 3D techniques for nasal anthropometry; however, they only included limited classic nasal facial landmarks and parameters. In our clinical routines, we have identified a considerable number of novel facial landmarks and nasal anthropometric parameters, which could be of great benefit to personalized rhinoplasty. Our aim is to verify their reliability, thus laying the foundation for the comprehensive application of 3DSI in personalized rhinoplasty. We determined 46 facial landmarks and 57 anthropometric parameters. A total of 110 volunteers were recruited, and the intra-assessor, inter-assessor, and intra-method reliability of nasal anthropometry were assessed through 3DSI. Our results displayed the high intra-assessor reliability of MAD (0.012–0.29, 0.003–0.758 mm), REM (0.008–1.958%), TEM (0–0.06), rTEM (0.001–0.155%), and ICC (0.77–0.995); inter-assessor reliability of 0.216–1.476, 0.003–2.013 mm; 0.01–7.552%, 0–0.161, and 0.001–1.481%, 0.732–0.985, respectively; and intra-method reliability of 0.006–0.598°, 0–0.379 mm; 0 0.984%, 0–0.047, and 0–0.078%, 0.996–0.998, respectively. This study provides conclusive evidence for the high reliability of novel facial landmarks and anthropometric parameters for comprehensive nasal measurements using the 3DSI system. Considering this, the proposed landmarks and parameters could be widely used for digital planning and evaluation in personalized rhinoplasty, otorhinolaryngology, and oral and maxillofacial surgery.


2022 ◽  
Vol 12 (1) ◽  
pp. 475
Author(s):  
Junseok Lee ◽  
Jumi Park ◽  
Seong Yong Moon ◽  
Kyoobin Lee

Extraction of mandibular third molars is a common procedure in oral and maxillofacial surgery. There are studies that simultaneously predict the extraction difficulty of mandibular third molar and the complications that may occur. Thus, we propose a method of automatically detecting mandibular third molars in the panoramic radiographic images and predicting the extraction difficulty and likelihood of inferior alveolar nerve (IAN) injury. Our dataset consists of 4903 panoramic radiographic images acquired from various dental hospitals. Seven dentists annotated detection and classification labels. The detection model determines the mandibular third molar in the panoramic radiographic image. The region of interest (ROI) includes the detected mandibular third molar, adjacent teeth, and IAN, which is cropped in the panoramic radiographic image. The classification models use ROI as input to predict the extraction difficulty and likelihood of IAN injury. The achieved detection performance was 99.0% mAP over the intersection of union (IOU) 0.5. In addition, we achieved an 83.5% accuracy for the prediction of extraction difficulty and an 81.1% accuracy for the prediction of the likelihood of IAN injury. We demonstrated that a deep learning method can support the diagnosis for extracting the mandibular third molar.


Sign in / Sign up

Export Citation Format

Share Document