tesler matrices
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 2)

H-INDEX

2
(FIVE YEARS 0)

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
James Haglund ◽  
Jeffrey B. Remmel ◽  
Andrew Timothy Wilson

International audience We conjecture two combinatorial interpretations for the symmetric function ∆eken, where ∆f is an eigenoperator for the modified Macdonald polynomials defined by Bergeron, Garsia, Haiman, and Tesler. Both interpretations can be seen as generalizations of the Shuffle Conjecture, a statement originally conjectured by Haglund, Haiman, Remmel, Loehr, and Ulyanov and recently proved by Carlsson and Mellit. We show how previous work of the second and third authors on Tesler matrices and ordered set partitions can be used to verify several cases of our conjectures. Furthermore, we use a reciprocity identity and LLT polynomials to prove another case. Finally, we show how our conjectures inspire 4-variable generalizations of the Catalan numbers, extending work of Garsia, Haiman, and the first author.


10.37236/6877 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Jason O'Neill

Tesler matrices are certain integral matrices counted by the Kostant partition function and have appeared recently in Haglund's study of diagonal harmonics. In 2014, Drew Armstrong defined a poset on such matrices and conjectured that the characteristic polynomial of this poset is a power of $q-1$. We use a method of Hallam and Sagan to prove a stronger version of this conjecture for posets of a certain class of generalized Tesler matrices. We also study bounds for the number of Tesler matrices and how they compare to the number of parking functions, the dimension of the space of diagonal harmonics.


2016 ◽  
Vol 45 (3) ◽  
pp. 825-855 ◽  
Author(s):  
Andrew Timothy Wilson
Keyword(s):  

2016 ◽  
Vol 23 (1) ◽  
pp. 425-454 ◽  
Author(s):  
Karola Mészáros ◽  
Alejandro H. Morales ◽  
Brendon Rhoades
Keyword(s):  

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Andrew Timothy Wilson

International audience We generalize previous definitions of Tesler matrices to allow negative matrix entries and non-positive hook sums. Our main result is an algebraic interpretation of a certain weighted sum over these matrices. Our interpretation uses <i>virtual Hilbert series</i>, a new class of symmetric function specializations which are defined by their values on (modified) Macdonald polynomials. As a result of this interpretation, we obtain a Tesler matrix expression for the Hall inner product $\langle \Delta_f e_n, p_{1^{n}}\rangle$, where $\Delta_f$ is a symmetric function operator from the theory of diagonal harmonics. We use our Tesler matrix expression, along with various facts about Tesler matrices, to provide simple formulas for $\langle \Delta_{e_1} e_n, p_{1^{n}}\rangle$ and $\langle \Delta_{e_k} e_n, p_{1^{n}}\rangle \mid_{t=0}$ involving $q; t$-binomial coefficients and ordered set partitions, respectively. Nous généralisons les définitions précédentes de matrices Tesler pour permettre les entrées de la matrice négatives et des montants crochet non-positifs. Notre principal résultat est une interprétation algébrique d’une certaine somme pondérée sur ces matrices. Notre interprétation utilise <i>série de Hilbert virtuel</i>, une nouvelle classe de spécialisations fonctionnelles symétriques qui sont définies par leurs valeurs sur les polynômes de Macdonald (modifiées). À la suite de cette interprétation, on obtient une expression de la matrice Tesler pour la salle intérieure produit $\langle \Delta_f e_n, p_{1^{n}}\rangle$, où $\Delta_f$ est un opérateur de fonction symétrique de la théorie harmonique de diagonale. Nous utilisons notre expression de la matrice Tesler, ainsi que divers faits sur des matrices Tesler, de fournir des formules simples pour $\langle \Delta_{e_1} e_n, p_{1^{n}}\rangle$ et $\langle \Delta_{e_k} e_n, p_{1^{n}}\rangle \mid_{t=0}$ impliquant $q; t$-coefficients binomial et ensemble ordonné partitions, respectivement.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Karola Mészáros ◽  
Alejandro H. Morales ◽  
Brendon Rhoades

26 pages, 4 figures. v2 has typos fixed, updated references, and a final remarks section including remarks from previous sections International audience We introduce the Tesler polytope $Tes_n(a)$, whose integer points are the Tesler matrices of size n with hook sums $a_1,a_2,...,a_n in Z_{\geq 0}$. We show that $Tes_n(a)$ is a flow polytope and therefore the number of Tesler matrices is counted by the type $A_n$ Kostant partition function evaluated at $(a_1,a_2,...,a_n,-\sum_{i=1}^n a_i)$. We describe the faces of this polytope in terms of "Tesler tableaux" and characterize when the polytope is simple. We prove that the h-vector of $Tes_n(a)$ when all $a_i>0$ is given by the Mahonian numbers and calculate the volume of $Tes_n(1,1,...,1)$ to be a product of consecutive Catalan numbers multiplied by the number of standard Young tableaux of staircase shape. On présente le polytope de Tesler $Tes_n(a)$, dont les points réticuilaires sont les matrices de Tesler de taillen avec des sommes des équerres $a_1,a_2,...,a_n in Z_{\geq 0}$. On montre que $Tes_n(a)$ est un polytope de flux. Donc lenombre de matrices de Tesler est donné par la fonction de Kostant de type An évaluée à ($(a_1,a_2,...,a_n,-\sum_{i=1}^n a_i)$On décrit les faces de ce polytope en termes de “tableaux de Tesler” et on caractérise quand le polytope est simple.On montre que l’h-vecteur de $Tes_n(a)$ , quand tous les $a_i>0$ , est donnée par le nombre de permutations avec unnombre donné d’inversions et on calcule le volume de T$Tes_n(1,1,...,1)$ comme un produit de nombres de Catalanconsécutives multiplié par le nombre de tableaux standard de Young en forme d’escalier


2012 ◽  
Vol 3 (3) ◽  
pp. 451-494 ◽  
Author(s):  
D. Armstrong ◽  
A. Garsia ◽  
J. Haglund ◽  
B. Rhoades ◽  
B. Sagan

Sign in / Sign up

Export Citation Format

Share Document