polynomial operators
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 6)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Vol 43 (5) ◽  
pp. 3-20
Author(s):  
A.F. Verlan ◽  
◽  
L.O. Mitko ◽  
O.A. Dyachuk ◽  
◽  
...  

The problem of mathematical description of nonlinear dynamical systems remains relevant today, especially given the need to build modern surveillance systems for complex technical objects, such as power plants. The use of polynomial operators obtained with the help of shortened Volterra series to solve this problem, as practice has shown, proved to be promising, because this method allows to display in the mathematical model both nonlinear and dynamic properties of systems. For further development of the method, it is advisable to analyze diffe­rent approaches in order to build effective algorithms for obtaining and applying in the problems of monitoring the functioning of nonlinear systems.


Author(s):  
Nathália Moraes de Oliveira ◽  
Enric Nart
Keyword(s):  

2020 ◽  
pp. 339-419
Author(s):  
Ioannis K. Argyros

2020 ◽  
Vol 52 (5) ◽  
pp. 4705-4750
Author(s):  
Todd Kapitula ◽  
Ross Parker ◽  
Björn Sandstede
Keyword(s):  

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Andrew Timothy Wilson

International audience We generalize previous definitions of Tesler matrices to allow negative matrix entries and non-positive hook sums. Our main result is an algebraic interpretation of a certain weighted sum over these matrices. Our interpretation uses <i>virtual Hilbert series</i>, a new class of symmetric function specializations which are defined by their values on (modified) Macdonald polynomials. As a result of this interpretation, we obtain a Tesler matrix expression for the Hall inner product $\langle \Delta_f e_n, p_{1^{n}}\rangle$, where $\Delta_f$ is a symmetric function operator from the theory of diagonal harmonics. We use our Tesler matrix expression, along with various facts about Tesler matrices, to provide simple formulas for $\langle \Delta_{e_1} e_n, p_{1^{n}}\rangle$ and $\langle \Delta_{e_k} e_n, p_{1^{n}}\rangle \mid_{t=0}$ involving $q; t$-binomial coefficients and ordered set partitions, respectively. Nous généralisons les définitions précédentes de matrices Tesler pour permettre les entrées de la matrice négatives et des montants crochet non-positifs. Notre principal résultat est une interprétation algébrique d’une certaine somme pondérée sur ces matrices. Notre interprétation utilise <i>série de Hilbert virtuel</i>, une nouvelle classe de spécialisations fonctionnelles symétriques qui sont définies par leurs valeurs sur les polynômes de Macdonald (modifiées). À la suite de cette interprétation, on obtient une expression de la matrice Tesler pour la salle intérieure produit $\langle \Delta_f e_n, p_{1^{n}}\rangle$, où $\Delta_f$ est un opérateur de fonction symétrique de la théorie harmonique de diagonale. Nous utilisons notre expression de la matrice Tesler, ainsi que divers faits sur des matrices Tesler, de fournir des formules simples pour $\langle \Delta_{e_1} e_n, p_{1^{n}}\rangle$ et $\langle \Delta_{e_k} e_n, p_{1^{n}}\rangle \mid_{t=0}$ impliquant $q; t$-coefficients binomial et ensemble ordonné partitions, respectivement.


Sign in / Sign up

Export Citation Format

Share Document