incoming wave
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 51)

H-INDEX

19
(FIVE YEARS 2)

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8486
Author(s):  
Taejoo Oh ◽  
Changseok Cho ◽  
Wookhyun Ahn ◽  
Jong-Gwan Yook ◽  
Jangjae Lee ◽  
...  

In this study, a method was experimentally verified for further reducing the radar cross-section (RCS) of a two-dimensional planar target by using a dielectric rim in a dielectric barrier discharge (DBD) plasma generator using a frequency selective surface (FSS) as an electrode. By designing the frequency selective surface such that the passbands of the radar signal match, it is possible to minimize the effect of the conductor electrode, in order to maximize the RCS reduction effect due to the plasma. By designing the FSS to be independent of the polarization, the effect of RCS reduction can be insensitive to the polarization of the incoming wave. Furthermore, by introducing a dielectric rim between the FSS electrode and the target, an additional RCS reduction effect is achieved. By fabricating the proposed plasma generator, an RCS reduction effect of up to 6.4 dB in X-band was experimentally verified.


Coasts ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 73-89
Author(s):  
Ivana M. Mingo ◽  
Rafael Almar ◽  
Laurent Lacaze

Low tide terrace (LLT) beaches are characterised by a moderately steep beach face and a flat shallow terrace influencing the local hydro-morphodynamics during low tide. The upper beachface slope (β) and the terrace width (Lt) are the main morphological parameters that define the shape of LTT cross-shore beach profiles. This work aims at better understanding the behaviour of β and Lt and their link with the incoming wave forcing. For this purpose, our results are based on 3.5 years times series of daily beach profiles and wave conditions surveys at two different microtidal LTT beaches with similar sediments size but different wave climate, one at Nha Trang (Vietnam) and the other one at Grand Popo (Benin). While they look similar, two contrasting behaviour were linked to two sub-types of LTT regimes: the first one is surf regulated beaches (SRB) where the swash zone is highly regulated by the surf zone wave energy dissipation on the terrace, and the second is swash regulated beaches (SwRB) acting in more reflective regime where the terrace is not active and the energy dissipation is mainly produced in the swash zone, the terrace becomes a consequences of the high dynamics in the swash zone. Finally, extending the common view of an equilibrium beach profile as a power law of the cross-shore distance, the ability of a simple parametrized cubic function model with the Dean number as unique control parameters is proposed and discussed. This simple model can be used for the understanding of LLT environments but it can not be extended to the whole beach spectrum.


Author(s):  
Yukihiro Fujimoto ◽  
Kohkichi Konno ◽  
Tomoaki Nagasawa

Abstract We discuss quantum dynamics in the ring systems with double Y-junctions in which two arms have same length. The node of a Y-junction can be parametrized by U(3). Considering mathematically permitted junction conditions seriously, we formulate such systems by scattering matrices. We show that the symmetric ring systems, which consist of two nodes with the same parameters under the reflection symmetry, have remarkable aspects that there exist localized states inevitably, and resonant perfect transmission occurs when the wavenumber of an incoming wave coincides with that of the localized states, for any parameters of the nodes except for the extremal cases in which the absolute values of components of scattering matrices take 1. We also investigate the magnetic disturbance to the symmetric ring systems.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012001
Author(s):  
C Deesamer ◽  
N Wanwieng ◽  
P Chainakun ◽  
A Watcharangkool

Abstract We investigate an alternative way to detect the gravitational wave using the concept of Aharonov-Bohm experiment in curved space-time. Our system consists of an electron beam which is split into two beams passing opposite sides of the solenoid and producing interference patterns. The change in interference patterns can be observed if the system is perturbed by the gravitational wave, and can be used to trace back to the nature of the gravitational wave. This system is described by the cylindrical coordinate in Minkowski space-time where we set the incoming wave propagating in the z-direction, perpendicular to the solenoid’s cross-section. We found that the perturbation on the cross-section area due to gravitational strength is not strong enough to significantly change the phase shift. Contrarily, by changing the magnetic field generated by the current inside the solenoid, the results suggest that the significant phase shift could potentially be detected if the gravitational wave is allowed to propagate in the direction that is perpendicular to z-direction.


Author(s):  
А.В. Ашихмин ◽  
И.Б. Крыжко ◽  
А.Б. Токарев ◽  
А.А. Фатеев

При создании корреляционно-фазовых пеленгаторов, как правило, в качестве антенных элементов используют ненаправленные антенные элементы (АЭ). Для использования измерений направленных АЭ требуется модифицировать алгоритмы пеленгации. Представлены соответствующие модификации алгоритмов и проведено сравнительное исследование точности пеленгования применительно к двухканальным корреляционно-интерферометрическим стандартным пеленгаторам, использующим плоские антенные решетки из направленных и ненаправленных АЭ. Рассмотрена также возможность определения пеленгов лишь по энергетическим измерениям, отсутствующая применительно к пеленгаторам с ненаправленными АЭ. Показано, что применение направленных АЭ позволяет снизить вероятность возникновения аномальных ошибок, повысить точность пеленгования при существенно больших значениях угла места, определяющего направление на источник радиоизлучения, снизить негативное влияние отказа от учета сферичности приходящей волны и, следовательно, уменьшить размеры ближней зоны пеленгатора, для которой характерно появление аномальных ошибок пеленгования. В многосигнальной радиообстановке использование направленных свойств АЭ позволяет также формировать пеленгационную диаграмму, обеспечивающую частичное подавление помеховых сигналов. Вместе с тем эффективное использование направленных свойств антенных АЭ требует максимально точного учета их диаграмм направленности (ДН). Погрешности описания ДН могут приводить к заметным ошибкам при определении пеленга, поэтому повышение качества работы пеленгационной системы за счет использования направленных АЭ сопровождается повышением требований к определению и точности практической реализации ДН АЭ When creating correlation-phase direction finders, as a rule, non-directional antenna elements (AE) are used. To use directional AE measurements, it is necessary to modify the direction finding algorithms. We present the corresponding modifications of the algorithms and we carried out a comparative study of the direction finding accuracy in relation to two-channel correlation-interferometric standard direction finders using flat antenna arrays of directional and non-directional AEs. We also considered the possibility of determining bearings only from energy measurements, which is absent in relation to direction finders with nondirectional AE. We show that the use of directional AEs makes it possible to reduce the probability of occurrence of anomalous errors, to increase the accuracy of direction finding at significantly large values of the elevation angle, which determines the direction to the radio emission source, to reduce the negative effect of refusing to take into account the sphericity of the incoming wave and, consequently, to reduce the size of the near-field zone of a bearer, which is characterized by the appearance of abnormal direction finding errors. In a multi-signal radio environment, the use of the directional properties of the AE also makes it possible to form a direction finding diagram that provides partial suppression of interference signals. At the same time, the effective use of the directional properties of antenna AEs requires the most accurate consideration of their directional patterns (DP). Errors in the description of the pattern can lead to noticeable errors in determining the bearing, therefore, improving the quality of operation of the direction finding system due to the use of directional AEs is accompanied by increased requirements for the determination and accuracy of practical implementation of the pattern of AE


2021 ◽  
pp. 2150477
Author(s):  
Serbay Duran ◽  
Asif Yokuş ◽  
Hülya Durur

In this study, we have taken into account the time-fractional Ostrovsky–Benjamin–Bona–Mahony equation, which is a synthesis of the time-fractional Ostrovsky equation and time-fractional Benjamin–Bona–Mahony equations and contains both mathematical and physical properties. Traveling wave solutions are produced by using the Ostrovsky–Benjamin–Bona–Mahony equation that physically sheds light on the incoming wave event on the ocean surface, using the sub-equation and Bernoulli sub-equation function methods. These solutions are presented in hyperbolic, trigonometric, singular and dark (topological) soliton types. With the help of special values given to the coefficients in the solitons obtained, it is associated with the solutions in the literature and it is observed that the solitons produced in this study are more general. Graphs representing the stationary wave at any given moment are presented. The advantages and disadvantages as well as the similarities and differences of the method are discussed in detail. Also, the behavior of the wave and its refraction according to the velocity variable, which is a physically important factor of the traveling wave solution, is analyzed and supported by simulation.


2021 ◽  
Vol 25 (9) ◽  
pp. 4825-4834
Author(s):  
Zhilin Zhang ◽  
Bensheng Huang ◽  
Chao Tan ◽  
Xiangju Cheng

Abstract. Vegetation in wetlands is a large-scale nature-based resource providing a myriad of services for human beings and the environment, such as dissipating incoming wave energy and protecting coastal areas. For understanding wave height attenuation by vegetation, there are two main traditional calibration approaches to the drag effect acting on the vegetation. One of them is based on the rule that wave height decays through the vegetated area by a reciprocal function and another by an exponential function. In both functions, the local wave height reduces with distance from the beginning of the vegetation depending on damping factors. These two damping factors, which are usually obtained from calibration by measured local wave height, are linked to the drag coefficient and measurable parameters, respectively. So the drag coefficient that quantifies the effect of the vegetation can be calculated by different methods, followed by connecting this coefficient to hydraulic parameters to make it predictable. In this study, two relations between these two damping factors and methods to calculate the drag coefficient have been investigated by 99 laboratory experiments. Finally, relations between the drag coefficient and relevant hydraulic parameters were analyzed. The results show that emergent conditions of the vegetation should be considered when studying the drag coefficient; traditional methods which had overlooked this condition cannot perform well when the vegetation was emerged. The new method based on the relation between these two damping factors performed as well as the well-recognized method for emerged and submerged vegetation. Additionally, the Keulegan–Carpenter number can be a suitable hydraulic parameter to predict the drag coefficient and only the experimental setup, especially the densities of the vegetation, can affect the prediction equations.


Author(s):  
L. V. Kharitonova ◽  
D. V. Alekseev ◽  
V. V. Fomin ◽  
◽  
◽  
...  

Wind waves can have a significant impact on the coastal infrastructure. The paper aims at a comprehensive study of regional characteristics of wind waves near the village of Morskoye (south-eastern coast of Crimea), which are necessary to develop a project of reconstruction of the highway adjacent to the coastal area. Space images and cartographic information were used to study the beach dynamics in the studied area. It is shown that before construction of the coast protection structures the beach width in the studied area was 25–30 m, whereas after the construction it narrowed down to 15–25 m. Based on the wind wave reanalysis data obtained using SWAN spectral model and ERA-Interim surface wind fields for 1979–2017, regime characteristics of waves in the coastal zone of Morskoye were calculated. It was found that waves with average periods of 3.0–3.5 s have the maximum recurrence (over 16 %). Wind waves coming from SE-SSE sector have the highest recurrence rate. Estimates were obtained for the extreme characteristics of wind waves that may occur once in a given number of years. The SWASH hydrodynamic model was used to perform mathematical modelling of wave run-up on the coastal area. In their calculations the authors used a regular grid of the coastal relief with high spatial resolution based on the interpolation of topo-geodetic and bathymetric survey results. An incoming wave was given as a soliton of 2.0; 3.0 and 3.4 m high. It was found that with the incoming wave height of 2.0 m, the vertical wave splash in the studied area varies within 1.7–2.2 m. At a height of 3.4 m, the splash reaches 1.8–2.9 m. In this case the beach is flooded completely. During the run-up, wave current velocity amounts up to 5 m/s. Along the lower boundary of the cliff the bottom maximum current velocity reaches 1.5–1.75 m/s. At such velocities near the cliff, the beach consisting of material with the grain size up to 60–90 mm can be eroded.


Author(s):  
В.Ю. Семенова ◽  
Д.А. Альбаев

В статье рассматривается метод определения нелинейных дифракционных сил, действующих на судно в условиях мелководья на основании трехмерной потенциальной теории. Производится оценка влияния относительной глубины водоема Н/Т на данные нелинейные силы. Для нахождения нелинейных сил, требуется определение потенциалов второго порядка малости. Решение основано на методах малого параметра, интегральных уравнений Фредгольма и функции Грина для случая мелководья. Данное решение является новым для отечественной практики. При определении потенциалов второго порядка учитываются нелинейные граничные условия на свободной поверхности жидкости и на смоченной поверхности судна. На основании изложенного метода разработана программа расчета нелинейных сил при различных Н/Т. Приводятся результаты расчетов сил и моментов для трех различных типов судов. Приведено сравнение с расчетами, основанными на двумерной теории. Особое внимание уделяется учету потенциала набегающего волнения второго порядка. Учитывается его вклад в образовании нелинейных дифракционных сил. Приводится сравнение расчетов с учетом влияния данного потенциала и без него. The article discusses a method for determining nonlinear diffraction forces acting on a ship in shallow water conditions on the basis of a three-dimensional potential theory. The influence of the relative depth of the fluid Н/Т on these nonlinear forces is assessed. To determine them, it is necessary to calculate the potentials of the second order of smallness. The solution of the problem is carried out on the basis of small parameter methods, Fredholm’s integral equations and Green’s function for a fluid of limited depth. The presented solution in national practice is new. During the determination of the second order potentials, nonlinear boundary conditions on the free surface of the liquid and on the wetted surface of the ship are taken into account on the basis of methods program was developed, considering various Н/Т. The results of calculations of the forces and moments for three types of different ships are presented. Comparison with calculations based on two-dimensional theory is given. Special attention is paid to taking into account the potential of the second-order of incoming wave. Its contribution to the formation of nonlinear diffraction forces is taken into account. A comparison of calculations with and without the influence of this potential is given


2021 ◽  
Vol 8 (3) ◽  
pp. 151-163
Author(s):  
Yong Jun Cho

Among the many scouring-protection works near a rubble mound breakwater, stacking armoring rocks in multiple or single layers are most popular. The rationale of these scouring-protection works is based on the Equilibrium regime or the maximum scouring depth. However, considering natural beaches, which constantly change their shape according to sea waves conditions, the equilibrium regime or the maximum scouring depth mentioned above seems to foot on the fragile physical background. In this study, in order to test the above hypothesis, numerical simulations were carried out on the partial reflection from the slopes of rubble mound breakwater, and its ensuing standing waves formed in the front seas of a breakwater, the change in the bed profiles due to the formation of standing waves, and scouring depth at the base of a rubble mound breakwater. In doing so, numerical simulations were implemented using OlaFoam, an OpenFoam-based toolbox, and SeoulFoam (Cho, 2020), a physics-based morphology model. Numerical results show that the wave length of sand waves is closely linked with the incoming wave period, while amplitudes of sand waves are determined by incoming wave height. Moreover, the seabed profiles underwent significant changes due to the presence of a rubble mound breakwater. It was shown that the size of sand waves increased when compared before the installation, and the shape of sand waves is getting skewed toward the shore direction. It was also shown that as exposure time to standing waves increased, the amplitude of sand waves also increased, and the scouring depth near the base of a breakwater increased. These results are contrary to the Equilibrium regime, and the scouring prevention works based on the stacking of armoring rocks should be re-evaluated.


Sign in / Sign up

Export Citation Format

Share Document