scattering parameter
Recently Published Documents


TOTAL DOCUMENTS

271
(FIVE YEARS 61)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Vol 11 (21) ◽  
pp. 10454
Author(s):  
Antonella Maria Loconsole ◽  
Vito Vincenzo Francione ◽  
Vincenza Portosi ◽  
Onofrio Losito ◽  
Michele Catalano ◽  
...  

A water-in-diesel microwave sensor based on a substrate integrated waveguide (SIW) microwave applicator is designed and characterized in this study. The interaction between the microwave electromagnetic field and the diesel fuel contaminated with small concentrations of water is obtained via suitable radiating slots placed on the top of an SIW waveguiding structure. The SIW applicator working frequency is chosen by observing the behavior of the complex dielectric permittivity of the fuel–water blend based on a preliminary wide band investigation. The performances of the SIW microwave sensor are evaluated in terms of scattering parameter modulus |S21| as a function of the water concentration in ppm. The best sensitivity Δ|S21|Δρ=1.42 mdB/ppm is obtained at a frequency of f=9.76 GHz, with a coefficient of determination R2=0.94. The sensor is low-cost, low profile and ensures a good sensitivity for constant and real-time monitoring.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012187
Author(s):  
A S Brusentsev ◽  
N N Bogachev ◽  
S G Dogaev ◽  
S Yu Kazantsev ◽  
A I Sattarova ◽  
...  

Abstract The purposes of this work was to study the possibility of using photoconductive semiconductor antenna based on Ge or GaAs for receiving information signals in the frequency communications and satellite navigation bands and to study a scattering parameter S11 – a return loss (a reflection coefficient) of configurable loop antennas with laser-plasma control based on semiconductor photoresistor. It is shown that the addition of semiconductor photoresistor element in the loop antenna makes it possible to significantly expand its functionality and control its characteristics using an external laser source.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Muhammad Inam Abbasi ◽  
Muhammad Yusof Ismail ◽  
Muhammad Ramlee Kamarudin ◽  
Qammer H. Abbasi

This work presents the design and analysis of active reflectarray antennas with slot embedded patch element configurations within an X -band frequency range. Two active reflectarray design technologies have been proposed by digital frequency switching using PIN diodes and analogue frequency tuning using liquid crystal-based substrates. A waveguide simulator has been used to perform scattering parameter measurements in order to practically compare the performance of reflectarray designed based on the two active design technologies. PIN diode-based active reflectarray unit cell design is shown to offer a frequency tunability of 0.36 GHz with a dynamic phase range of 226°. On the other hand, liquid crystal-based design provided slightly lower frequency tunability of 0.20 GHz with a dynamic phase range of 124°. Moreover, the higher reflection loss and slow frequency tuning are demonstrated to be the disadvantages of liquid crystal-based designs as compared to PIN diode-based active reflectarray designs.


2021 ◽  
Vol 14 (10) ◽  
pp. 6335-6355
Author(s):  
Jesús Yus-Díez ◽  
Vera Bernardoni ◽  
Griša Močnik ◽  
Andrés Alastuey ◽  
Davide Ciniglia ◽  
...  

Abstract. Providing reliable observations of aerosol particles' absorption properties at spatial and temporal resolutions suited to climate models is of utter importance to better understand the effects that atmospheric particles have on climate. Nowadays, one of the instruments most widely used in international monitoring networks for in situ surface measurements of light absorption properties of atmospheric aerosol particles is the multi-wavelength dual-spot Aethalometer, AE33. The AE33 derives the absorption coefficients of aerosol particles at seven different wavelengths from the measurements of the optical attenuation of light through a filter where particles are continuously collected. An accurate determination of the absorption coefficients from the AE33 instrument relies on the quantification of the non-linear processes related to the sample collection on the filter. The multiple-scattering correction factor (C), which depends on the filter tape used and on the optical properties of the collected particles, is the parameter with both the greatest uncertainty and the greatest impact on the absorption coefficients derived from the AE33 measurements. Here we present an in-depth analysis of the AE33 multiple-scattering correction factor C and its wavelength dependence for two different and widely used filter tapes, namely the old, and most referenced, TFE-coated glass, or M8020, filter tape and the currently, and most widely used, M8060 filter tape. For performing this analysis, we compared the attenuation measurements from AE33 with the absorption coefficients measured with different filter-based techniques. On-line co-located multi-angle absorption photometer (MAAP) measurements and off-line PP_UniMI polar photometer measurements were employed as reference absorption measurements for this work. To this aim, we used data from three different measurement stations located in the north-east of Spain, namely an urban background station (Barcelona, BCN), a regional background station (Montseny, MSY) and a mountaintop station (Montsec d'Ares, MSA). The median C values (at 637 nm) measured at the three stations ranged between 2.29 (at BCN and MSY, lowest 5th percentile of 1.97 and highest 95th percentile of 2.68) and 2.51 (at MSA, lowest 5th percentile of 2.06 and highest 95th percentile of 3.06). The analysis of the cross-sensitivity to scattering, for the two filter tapes considered here, revealed a large increase in the C factor when the single-scattering albedo (SSA) of the collected particles was above a given threshold, up to a 3-fold increase above the average C values. The SSA threshold appeared to be site dependent and ranged between 0.90 to 0.95 for the stations considered in the study. The results of the cross-sensitivity to scattering displayed a fitted constant multiple-scattering parameter, Cf, of 2.21 and 1.96, and a cross-sensitivity factor, ms, of 1.8 % and 3.4 % for the MSY and MSA stations, respectively, for the TFE-coated glass filter tape. For the M8060 filter tape, Cf values of 2.50, 1.96 and 1.82 and ms values of 1.6 %, 3.0 % and 4.9 % for the BCN, MSY and MSA stations, respectively, were obtained. SSA variations also influenced the spectral dependence of C, which showed an increase with wavelength when SSA was above the site-dependent threshold. Below the SSA threshold, no statistically significant dependence of C on the wavelength was observed. For the measurement stations considered here, the wavelength dependence of C was to some extent driven by the presence of dust particles during Saharan dust outbreaks that had the potential to increase the SSA above the average values. At the mountaintop station, an omission of the wavelength dependence of the C factor led to an underestimation of the absorption Ångström exponent (AAE) by up to 12 %. Differences in the absorption coefficient determined from AE33 measurements at BCN, MSY and MSA of around 35 %–40 % can be expected when using the site-dependent experimentally obtained C value instead of the nominal C value. Due to the fundamental role that the SSA of the particles collected on the filter tape has in the multiple-scattering parameter C, we present a methodology that allows the recognition of the conditions upon which the use of a constant and wavelength-independent C is feasible.


Author(s):  
Hussein Ali Hussein ◽  
Yaqeen Sabah Mezaal ◽  
Ban M. Alameri

In this paper, the miniaturized microstrip diplexer has been designed for dual channels based on FR4 substrate material. It consists of two bandpass filters (BPFs) functioning under dissimilar frequency bands coupled with a unified junction. Every BPF has been created by a meandered line resonator, step impedance resonator, uniform impedance resonator, and input/output feed lines. The AWR electromagnetic simulator has been used for characterizing the frequency responses of the projected diplexer. Noble scattering parameter results with narrow band responses and negative group delay values are obtained for the proposed diplexer. The microstrip diplexer has an interesting band isolation between the two filters around 31 dB. The device has been successfully fabricated and verified with the simulations.


2021 ◽  
Author(s):  
Ying Liu ◽  
Yue Liu ◽  
Michael GB Drew

Abstract It is shown here that many concepts in current mainstream microwave absorption theory are used inappropriately. Reflection loss RL has been used to characterize microwave absorption from material instead of film and the results have been rationalized by impedance matching theory. The quarter-wavelength model states that the reflection of microwaves with wavelength l from a film is minimized if the thickness of the film is m l /4 where m is an odd integer. But we show here that the model is wrong because the phase effects from interfaces have been overlooked. RL is an innate property only for metal-backed film. Impedance matching theory is developed from transmission-line theory for scattering parameter s 11 but cannot be generalized to RL.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1046
Author(s):  
Valeria Marrocco ◽  
Vito Basile ◽  
Ilaria Marasco ◽  
Giovanni Niro ◽  
Luigi Melchiorre ◽  
...  

Bio-inspired Dielectric Resonator Antennas (DRAs) are engaging more and more attention from the scientific community due to their exceptional wideband characteristic, which is especially desirable for the implementation of 5G communications. Nonetheless, since these antennas exhibit peculiar geometries in their micro-features, high dimensional accuracy must be accomplished via the selection of the most suitable fabrication process. In this study, the challenges to the manufacturing process presented by the wideband Spiral shell Dielectric Resonator Antenna (SsDRA), based on the Gielis superformula, are addressed. Three prototypes, made of three different photopolymer resins, were manufactured by bottom-up micro-Stereolithography (SLA). This process allows to cope with SsDRA’s fabrication criticalities, especially concerning the wavy features characterizing the thin spiral surface and the micro-features located in close proximity to the spiral origin. The assembly of the SsDRAs with a ground plane and feed probe was also accurately managed in order to guarantee reliable and repeatable measurements. The scattering parameter S11 trends were then measured by means of a Vector Network Analyzer, while the realized gains and 3D radiation diagrams were measured in the anechoic chamber. The experimental results show that all SsDRAs display relevant wideband behavior of 2 GHz at −10 dB in the sub-6 GHz range.


2021 ◽  
Author(s):  
Jacopo Iannacci ◽  
Girolamo Tagliapietra ◽  
Alessio Bucciarelli

Abstract The emerging paradigms of Beyond-5G, 6G and Super-IoT will demand for Radio Frequency (RF) passive components with pronounced performance, and RF-MEMS technology, i.e. Microsystem-based RF passives, is a good candidate to meet such a challenge. As known, RF-MEMS have a complex behavior, that crosses different physical domains (mechanical; electrical; electromagnetic), making the whole design optimization and trimming phases particularly articulated and time consuming. In this work, we propose a novel design optimization approach based on the Response Surface Method (RSM) statistical methodology, focusing the attention on a class of RF-MEMS-based programmable step power attenuators. The proposed method is validated both against physical simulations, performed with Finite Element Method (FEM) commercial software tools, as well as experimental measurements of physical devices. The case study here discussed features 3 DoFs (Degrees of Freedom), comprising both geometrical and material parameters, and aims at optimizing the RF performance of the MEMS attenuator in terms of attenuation (S21 Scattering parameter) and reflection (VSWR – Voltage Standing Wave Ratio). When validate, the proposed RSM-based method allows avoiding physical FEM simulations, thus making the design optimization considerably faster and less complex, both in terms of time and computational load.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5048
Author(s):  
Bernardo Fabiani ◽  
Eduardo Sakomura ◽  
Eduardo Silveira ◽  
Daniel Nascimento ◽  
Daniel Ferreira ◽  
...  

Direction finding (DF) systems are used to determine the direction-of-arrival (DoA) of electromagnetic waves, thus allowing for the tracking of RF sources. In this paper, we present an alternative formulation of antenna arrays for modeling DF systems. To improve the accuracy of the data provided by the DF systems, the effects of mutual coupling in the array, polarization of the received waves, and impedance mismatches in the RF front-end receiver are all taken into account in the steering vectors of the DoA algorithms. A closed-form expression, which uses scattering parameter data and active-element patterns, is derived to compute the receiver output voltages. Special attention is given to the analysis of wave polarization relative to the DF system orientation. Applying the formulation introduced here, a complete characterization of the received waves is accomplished without the need for system calibration techniques. The validation of the proposed model is carried out by measurements of a 2.2 GHz DF system running a MUSIC algorithm. Tests are performed with a linear array of printed monopoles and with a planar microstrip antenna array having polarization diversity. The experimental results show DoA estimation errors below 6° and correct classification of the polarization of incoming waves, confirming the good performance of the developed formulation.


Sign in / Sign up

Export Citation Format

Share Document